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Abstract

In recent years, conversational AI has experienced a significant increase in popularity. The
conversational systems have improved significantly, especially due to the advancements of
the Large Language Models. Compared to the previous systems, which were mainly built
on top of the rule-based approaches, the current systems are capable of responding to
various inputs. However, the cost for better response quality is the resource consumption
and, consequently, the latency. Moreover, the customization of these systems at a larger
scale starts to be problematic.

The main goal of the dissertation thesis is to contribute to the field of conversational
system architectures and natural language understanding by leveraging hybrid approaches.
We propose a novel hybrid conversational system architecture that was created as a result
of a series of architectures tested during annual Alexa Prize Socialbot Grand Challenge
competitions. All of the subsequent architecture iterations were awarded during the com-
petitions, and the final one was awarded as a first-place winner. The competition allowed
the system to be evaluated in a real-world setup with tens of thousands of users.

The proposed architecture is built on top of sub-dialogue units, allowing a flexible
combination of these units to create a complex conversational application. Each sub-
dialogue has its own set of intent recognition models that are combined variably during
the runtime. The combination of the models is achieved by our proposed novel approach
called hierarchical intent recognition. Additionally, the intent recognition is coupled with
Out of domain detection, allowing to recognition of the limits of the conversational design
and easily plugging the generative Large Language Model (LLM).

Moreover, we created a conversational platform on top of the proposed architecture,
allowing the dialogue designer to create and test the conversational application easily using
a minimal amount of data. The design process is done using an intuitive visual interface.
The resulting applications use efficient algorithms to achieve the lowest possible latency.

Besides the intent recognition and OOD detection, we propose a pragmatic level of un-
derstanding using Dialogue Acts. The segmented approach allows fine-grained classification
that can be used to modify the conversation flow, especially in the Out of domain (OOD)
scenarios.
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All of the proposed approaches have been tested in real-world scenarios during Alexa
Prize competitions and by our additional voice-enabled applications.

Keywords:
natural language understanding, conversational systems, dialogue systems, socialbot,

intent recognition, out-of-domain detection, dialogue act detection, large language models.
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Abstrakt

V posledńıch letech jsme mohli zaznamenat zvýšenou popularitu umělé inteligence. Kon-
verzačńı systémy výrazně zlepšily své dovednosti zejména d́ıky pokroku v oblasti velkých
jazykových model̊u. Oproti dř́ıvěǰśım systémům, které byly postaveny předevš́ım na př́ıstupech
založených na předem připravených pravidlech, jsou současné systémy schopny reagovat na
celou škálu vstup̊u. Cenou za lepš́ı kvalitu odpověd́ı jsou však nároky na výpočetńı zdroje
a s t́ım spojená zvýšená doba odezvy. Nav́ıc adaptace těchto systémů v rámci složitěǰśı
aplikaćı bývá často problematická.

Hlavńım ćılem této práce je přispět k rozvoji konverzačńıch systémových architektur
a porozuměńı přirozenému jazyku využit́ım hybridńıch př́ıstup̊u. Tato práce navrhuje
novou architekturu hybridńıho konverzačńıho systému, která vznikla jako výsledek řady
architektur testovaných během soutěž́ı Alexa Prize Socialbot Grand Challenge. Všechny
iterace architektury byly během soutěž́ı oceněny, přičemž finálńı verze se umı́stila na prvńım
mı́stě. Soutěž mimo jiné umožnila vyhodnotit systém v reálném prostřed́ı s deśıtkami tiśıc
uživatel̊u.

Navrhovaná architektura je postavena na konverzačńıch jednotkách, které nazýváme
sub-dialogy. Tyto sub-dialogy mohou být flexibilně kombinovány pro vytvořeńı kom-
plexńı konverzačńı aplikace. Každý d́ılč́ı sub-dialog má svou vlastńı sadu model̊u na
rozpoznáváńı intentu, které jsou během běhu variabilně kombinovány. Kombinace model̊u
je dosažena námi navrženým novým př́ıstupem nazvaným hierarchické rozpoznáváńı in-
tentu. Rozpoznáváńı záměr̊u je nav́ıc spojeno s detekćı Out of domain, což umožňuje
rozpoznat limity konverzačńıho návrhu a snadno zapojit generativńı jazykové modely.

Nad navrženou architekturou jsme také vytvořili konverzačńı platformu, která umožňuje
dialogovým designer̊um snadno vytvořit a otestovat konverzačńı aplikaci s použit́ım minimálńıho
množstv́ı dat. Proces návrhu prob́ıhá pomoćı intuitivńıho vizuálńıho rozhrańı. Výsledné
aplikace využ́ıvaj́ı efektivńı algoritmy k dosažeńı co nejnižš́ı latence.

Kromě rozpoznáváńı intentu a detekce OOD navrhujeme pragmatickou úroveň porozuměńı
pomoćı Dialogových Act̊u. Segmentovaný př́ıstup umožňuje klasifikaci na úrovni nižš́ı, než
je celá promluva, kterou lze využ́ıt k úpravě pr̊uběhu konverzace, zejména ve scénář́ıch Out
of domain (OOD).

v



Všechny navržené př́ıstupy byly testovány v reálných scénář́ıch během soutěž́ı Alexa
Prize a našimi daľśımi voice-enabled aplikacemi.

Kĺıčová slova:
rozpoznáváńı přirozeného jazyka, konverzačńı systémy, dialogové systémy, sociálńı

chatbot, rozpoznáváńı intentu, detekce dialogových akt̊u, velké jazykové modely.
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Chapter 1

Introduction

Conversational systems, also called chatbots in various use cases, have become increasingly
popular in recent years. The technology behind the systems mainly consists of Natural
Language Processing (NLP) and optional Speech Processing for the voice-enabled conver-
sational systems. Each technology category has progressed rapidly in recent years. Over
the years, we have witnessed several approaches driven primarily by technology readiness
and applicable use cases. Many of the approaches have been successfully implemented in
the production environment to solve a particular task. One of the essential parts of the
NLP used (not only) in conversational systems is Natural Language Understanding (NLU),
which is the main topic of this thesis.

1.1 Motivation

Human–machine interaction has been evolving since the early days of computing. People
want to control computers in the most natural way, maximizing their effectiveness during
a particular task. One of the most natural and intuitive ways for humans to communicate
is through a natural language. However, it is a challenging task for computers to under-
stand and respond to natural language. Adaptation on the human side and improvement
of understanding on the technology side are two opposite approaches to a more successful
human–machine interaction. However, constraining the richness of the natural language
decreases the overall user experience and has a negative impact on the natural way of
communication by, e.g., limiting the vocabulary or creating less complex sentences. An
improved machine’s ability to understand the natural language can, on the other hand,
significantly improve the user experience as it does to require any significant input adjust-
ments and modifications.

One of the first forms of interaction that is on the edge of natural language is the use of
simple commands. Commands are typically words of a sequence of words from a predefined
set. A user of a command-based system needs to know exactly the command wording. In
this way, it is easy for the system to map the command for a specific action. Another
level of interaction is the use of query language. The query language with the aspects of
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natural languages does not have to be strictly defined, which allows the users to construct
a query freely. This approach has been used in search engines such as Google or Bing for
decades. As search engine queries do not have a strict structure, people tend to try various
formulations to find what they need in the search results. This leads to an adaptation on
the human side.

With recent technological advancements, purely natural language human–machine in-
teraction is becoming more and more popular. However, the origin of this type of inter-
action dates back to the 1960s when the first conversational system ELIZA (Weizenbaum,
1966) was introduced. The capabilities of the natural-language-based conversational sys-
tems have improved over the years as approaches evolved from simple keyword recognition
and pattern matching through simple AI description languages, such as AIML (Wallace,
2003), to machine learning and deep-learning-based algorithms. Furthermore, conversa-
tional systems have also gained popularity due to advancements in Automatic Speech
Recognition (ASR) algorithms. Voice-enabled systems have hit the consumer market in
the form of Interactive Voice Assistants (IVAs), such as Amazon Alexa, Google Home, or
Apple Siri. These assistants allow handling various use cases via voice using commands or
short conversations.

Interactive voice assistants are significant, but still one of the many channels where
the conversation may take place. The ultimate goal is not to replace human-to-human
conversation but rather to provide an intuitive interface for various use cases where it is
suitable to use conversational systems.

It brings a lot of challenges to achieve a natural, fluent, and engaging conversation. One
of the steps is natural language understanding, which allows the system to understand the
meaning behind the user’s utterance. The understanding is crucial for further processing
of the dialogue as it detects the important aspect of the current utterance in the context of
a whole conversation. With a better understanding, the system can generate more suitable
and specific responses, which leads to a more successful conversation. The processing
requires multiple steps that will be described later in this thesis.

1.2 Problem Statement

The research of conversational systems as a subset of Natural Language Understanding
has been dealing with various challenges over the last several decades. It inherited various
approaches from the parent field od NLP concerning language processing from various
sources, such as documents, web pages, conversations, voice transcripts, and more. Each
source type has its unique language characteristics that typically differ further depending on
the underlying topic. The understanding can be done on different levels, e.g., sentence-level
understanding or document-level understanding. An example of the same NLU task on
different levels can be a sentiment analysis—we can estimate the sentiment on a paragraph,
whole document, or per sentence. When dealing with a finer-grained understanding (e.g.,
per sentence), we use a term context to describe the additional information needed for
understanding a selected sequence of words.
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This thesis focuses on NLU in dialogue (conversational) systems where the language
may differ substantially from a language in the form of a block of text typically represented
by documents or web pages. In general, the conversation may have two and more partici-
pants communicating with each other. For the purposes of the NLU in dialogue systems,
let’s suppose that the conversation has only two participants—a bot and a user. The bot
and the user are taking turns in the conversation. At each turn, both sides respond with an
utterance that may or may not be a reaction to the previous utterances in the conversation.

The problem of the NLU in open-domain dialogue systems is recognizing the underlying
meaning of a user’s utterance in a single turn, given the context of the previous turns.
The context has an essential role in understanding as the relevant information does not
have to be explicitly mentioned in the turn we are focusing on. There are multiple ways to
incorporate the context into the understanding process, and they will be described in detail
in Chapter 2 and 5. The understanding consists of multiple tasks that take the current
utterance plus the context as an input and outputs the representation of a selected aspect
in a suitable form for further dialogue processing. The tasks may, for example, include a
classification into a set of classes that can be used directly in the decision logic or as input
for the models in the dialogue pipeline. Alternatively, the NLU models may transform the
input into to latent representation that can be more suitable for the additional models.

In the open-domain dialogue, as an opposite to a goal-oriented dialogue, there is a wide
range of possible user utterances as the dialogue is not limited to a single use case. The
classification algorithms used as part of the NLU pipeline cannot be easily limited to a finite
set of pre-defined classes as we cannot anticipate all the possibilities of the natural language.
There are multiple approaches to tackling this problem. The simplest one is to accept a
certain amount of errors caused by the insufficient coverage of the NLU classes. The
approach can be further coupled with a fallback strategy to handle unexpected utterances.
Another approach is to use an end-to-end dialogue model where the NLU is done implicitly
in the model. Dividing the whole conversation domain into smaller logical units combined
with end-to-end language models fine-tuned using conversational data brings promising
results and it will be further discussed in this thesis.

1.3 Thesis Approach and Contributions

The main goal of the thesis is to contribute to the field of natural language understanding
in dialogue systems with a focus on multi- and open-domain system architectures. Such
systems typically have no or loosely defined goal of the conversation. Recent research in
the field of conversational AI can be divided into three categories—systems with a modular
pipeline, end-to-end models, and a combination of both.

Modular systems are commonly used for goal-oriented dialogue systems. The pipeline
modules perform various tasks from NLU, dialogue management, and database access to
Natural Language Generation (NLG). Dialogue State Tracking Challenge (DSTC) is a
typical benchmark of those systems (Williams et al., 2016). End-to-end models based on
large language models take advantage of pre-training on large corpora of natural language
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text. Pre-training on unlabeled text allows the models to learn the properties of the
language (or multiple languages) via language modeling tasks such as Masked Language
Modeling (MLM) or next token/sentence prediction (Devlin et al., 2019). Models from
the GPT family are popular representatives of these models (Brown et al., 2020). The
models are then fine-tuned on the particular downstream tasks to be suitable for a certain
use case. Alternatively, especially the larger ones, such as GPT-3, can be controlled using
a more and more popular prompt-based learning technique (Brown et al., 2020). Recent
publications also show the usage of the pre-trained language models to simulate modules
in the modular pipeline of the goal-oriented systems (Budzianowski and Vulić, 2019).

Both approaches mentioned above share the requirement of conversational data for the
training or fine-tuning process. The large language models are typically pre-trained using
data that does not need to have a conversational nature since such data is easier to get. To
use these models on conversational tasks, we need to find good quality conversational data
for fine-tuning, which introduces several issues. First, obtaining a large amount of good-
quality conversational data is not an easy task. The data is often biased as it is usually
gathered under specific circumstances. The data from real conversations are typically
private and hard to get. Second, the models are driven using the data only, and their
behavior can be adjusted primarily by modifying the data or replacing it with a different
set.

Since the data plays a key role (not only) in the development process of conversational
applications, we see the main contribution of this thesis in addressing the situations when
there is not enough good quality data for a particular use case. We see a big potential in
decomposing the whole conversational application into multiple logical units (we call them
sub-dialogues) in the low data setup. The decomposition comes with two main benefits:
First, the reusability of the common parts of the conversation. Second, the conversational
design can focus only on the application’s essential parts. One of the aspects of the modular
architecture is the modularity of the NLU models. Each sub-dialogue has its own set of
intent recognition models using a pre-trained base. Moreover, we see the great importance
of focusing on the boundaries of the decisions of understanding algorithms, i.e., detecting
when the input does not correspond to any of the classes the model is supposed to recognize.
This task is referred to as Out of domain (OOD) detection.

Generally, the NLU models can be divided into two categories—domain-specific and
domain-independent. Intent recognition models are typical representatives of domain-
specific models, while a dialogue act model is representative of a domain-independent
model. The domain-independent models are a powerful base for conversational systems
as they can be used to improve the performance of the domain-specific models or as a
standalone discriminator of unexpected utterances.

Finally, conversational systems have a limited time for producing the response given the
user utterance and the other contextual information. This makes them sensitive to using
slow yet powerful components. The Large Language Models are the typical representative
of the components that may consume a significant time while generating the response.
Therefore, we focus on the overall efficiency of the conversational system architecture,
especially on using efficient NLU algorithms.
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1.3.1 Goal and Contributions

The goal of this thesis is to propose new techniques, architecture, and components that have
been developed to overcome the shortcomings of (1) a simple scripted prompt–reply model
that has been widely used for several decades and (2) massive and resource-demanding
Large Language Models that have been popularized during last few years. To prove the
new architecture’s usefulness, we will introduce and discuss new data sets and use the
resulting system in a production environment at scale. We will also evaluate multiple
variants of the architectures and NLU approaches to select the best-performing one in the
real environment.

The following list summarizes the main areas of contributions of the thesis:

◦ Modular architectures

– Hybrid approach – We propose a series of conversational system architectures
that combine modular approaches with a specific conversational design with
end-to-end approaches handling a wide range of user inputs.

– Resrouce effectiveness – The proposed architecture is focused on runtime latency,
ensuring the conversational experience is fluent.

◦ Dialogue structure

– Sub-dialogue hierarchy – We will show the decomposition of the dialogue into
smaller logical units—sub-dialogues—that can be easily created, tested, and
reused in various use cases. Each sub-dialogue represents a small portion of the
whole dialogue (a few dialogue turns) and has its own set of intents.

– Reusable dialogue components – Each sub-dialogue can be shared across multi-
ple scenarios and use cases, reducing the development complexity and increasing
the dialogue variability.

◦ Hierarchical Natural Language Understanding

– Hierarchical Intent Recognition – We propose a flexible hierarchical intent recog-
nition approach, which is a mandatory part of the conversational application
divided into multiple sub-dialogues. As the sub-dialogues can be used in mul-
tiple scenarios, we introduce a dynamic model combination to achieve the best
results.

– Out of domain detection – Additionally, we take the Out of domain (OOD)
detection as an integral part of the intent recognition. We propose a context-
specific OOD handling without the need for specific data. This enables a smooth
conversation design process and honors the hierarchical approach.

◦ Pragmatic level of Conversation – The conversational design often deals primarily
with a specific level of conversation. The dialogue is then driven based on NLU
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results, such as intents and entities (slot values). The pragmatic level of conversation
allows driving the conversation regardless of the topic using the utterance segments
and corresponding dialogue acts.

The contributions of this thesis have also been implemented and tested as part of
the Alquist social bot. The social bot has been awarded several times in a row during
annual Alexa Prize Socialbot Grand Challenge competitions, gaining valuable feedback
from millions of Amazon Echo customers as well as professional interactors and judges.
The user evaluation of the system based on the various NLU (and other) approaches is
reported in Chapter 4. Besides the actual conversational system, we developed a set of
tools for modular conversational design to make the design, training, and testing process
more effective. Moreover, the know-how behind these tools has been incorporated into the
conversational platform Flowstorm (Pichl et al., 2022).

1.4 Structure of the Dissertation Thesis

This thesis is organized into several chapters. After the introduction and motivation pre-
sented in this chapter, we continue with conversational concepts and categorizations along
with the algorithms in the field of NLP. Then, we propose effective architectures of the con-
versational socialbot, which resulted in a novel modular conversational platform. We also
present a pragmatic level of understanding as an addition to domain-specific algorithms.
Finally, we conclude the thesis with a summarization of the contributions.

1. Introduction: Describes the motivation behind our efforts together with our goals
and the problem description. There is also a list of contributions of this dissertation
thesis.

2. Conversational Systems: Describes the key concepts of the conversational systems,
their architecture variants, and their evolvement during the years. It also includes
the various categories of the systems, such as goal-oriented and chit-chat systems.

3. Natual Language Processing Algorithms: Describes the relevant algorithm commonly
used in NLP and NLU fields with focus of conversational domain.

4. Effective Hybrid Architecture of a Conversational Socialbot: Describes the open-
domain conversational system named Alquist that was developed during the annual
Amazon Alexa Prize competitions starting in 2017.

5. Modular Dialogue Architecture With Hierarchical Intent Recognition: Describes the
sub-dialogue architecture with modular intent recognition, local and global intents
logic, and out-of-domain detection.

6. Open-Domain Understanding Using Pragramtic Level of Conversation: Describes the
NLU on the generic conversational level, which includes dialogue acts detection and
utterance segmentation.
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7. Conclusion: Summarizes the results of our research, suggests possible topics for fur-
ther research, and concludes the thesis.
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Chapter 2

Conversational Systems

Conversation systems have been researched for many years, and their popularity has in-
creased significantly recently. The capabilities of the systems have also changed rapidly, as
the systems based on more basic algorithms capable of solving simpler tasks in a limited do-
main with a limited set of actions evolved into complex systems handling various domains
in a more fluent way. Regardless of the use case, the overall goal is to enable human-like
communication with users through natural language. The systems allow users to interact
with them using written or spoken language, and they respond with appropriate, prefer-
ably context-aware responses. They can be integrated into various applications such as web
pages, virtual assistants, customer service systems, or voice-controlled devices. Over the
years, they have evolved from using simple string-matching and pattern-based approaches
to standard machine-learning techniques and, in recent years, to deep learning techniques,
including large language models (LLM). The techniques are crucial for understanding and
interpreting user input as well as for managing the dialogue and generating appropriate
responses. Additionally, voice bots require automatic speech recognition (ASR) and Text-
to-speech (TTS) algorithms to process voice input and provide the response via voice.

During a conversation, humans perceive more than just spoken words. They use other
senses, such as body language, nuances in spoken language, and emotions. They also
consider their experiences related to the location, time, and purpose of the conversation.
All of these qualities have their role in human-to-human interaction, and the trend in
modern systems is to model more and more of them. However, we will focus only on the
language part of the conversation in this thesis, more specifically on the understanding
part.

The aim of this chapter is to introduce the conversational system concepts and focus on
the related research during recent decades. First, we define the important terms used in the
research of conversational systems. Then, we follow with a brief history of the systems that
contributed significantly to the further research. The related natural language interfaces
are mentioned as a bridge between historical and modern conversational systems that
taught the users to use a (modified) natural language while interacting with machines.

Additionally, we categorized the conversational systems based on their use cases and
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architecture type. For modular architectures, we describe the important parts and mention
the related research.

2.1 Units of a Conversation

The following terms are commonly used to describe a conversation and to address individual
conversational units in turn-taking conversations. The different conversation units are then
used as input in the particular NLP algorithms that will be discussed later in the thesis. The
decision of which type of conversational units are suitable inputs for the algorithms depends
on the task type and complexity. For example, a dialogue act classification performs best
when a contextual window is provided, as the previous utterances also determine the
dialogue act of the current one.

2.1.1 Token

A token is a unit consisting of a sequence of contiguous characters that play a certain
role in a written language (Hagiwara, 2021). The token often equals a single word. The
process of splitting a text into tokens is called tokenization. However, some algorithms
used for tokenization produce multiple tokens for a single word to keep a reasonable size of
a vocabulary (Sennrich et al., 2016; Schuster and Nakajima, 2012). In the thesis, we will
adopt the term token to represent a single word since the token classification algorithms
(e.g., entity recognition) are required to perform a word-level classification.

2.1.2 Utterance

An utterance is a tuple of speaker identification and a sequence of tokens. Let’s denote U
to be an utterance, then

U = (s, t1, . . . , tn)

where s is the speaker identification and ti is a token. In general, the number of speakers
in the conversation may be arbitrary. We are focusing on cases where there are exactly
two speakers, i.e., a bot and a user.

2.1.3 Conversation Turn

A conversational turn, also called a dialogue turn, is a basic unit of the conversation. It
consists of a pair of utterances, typically a user utterance (also called a message) and a bot
utterance (also called a response). The reason why the bot utterance is called response and
not the user utterance is that from the perspective of building a conversational system, the
system is producing responses to the input utterances (messages). Generally, the formal
definition of the conversational turn is following:

T = (U1, U2)
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When speaking of conversational turn in the context of the bot–user conversation, the user
utterance is the first one in the tuple, and the bot utterance is the second one.

T = (Uu, Ub)

When dealing with the turn as part of the conversation, we are speaking of the turn-taking
conversation (Sacks et al., 1978). Assuming two speakers are involved in the conversation
(user and bot), the turn-taking conversation proceeds in a way that only one speaker speaks
at a time and the other one lines. Once the first speaker finishes, the roles are switched.

2.1.4 Contextual Window

Given a specific turn in the conversation, a contextual window is a range of multiple
preceding dialogue turns. We are not considering turns succeding the current turn as the
algorithms trained on the contextual windows need to be used in runtime where only past
turns are available. Formally, the window W of size n is defined as follows:

W n
k = (Tk−n+1, . . . , Tk−1, Tk)

where Tk is a current turn. The contextual window of size 1 contains only the current turn,
size 2 contains the current turn plus the previous one, etc.

Contextual windows are used in situations when the desired information cannot be
classified using only the current turn as an input. For example, during entity recognition,
when the bot asks “What is your favorite movie?” and the user responds with “Matrix”,
the classification algorithm needs at least a previous turn to be included in the window to
successfully classify Matrix as an entity of type movie (without entity linking or additional
database of entity types).

2.1.5 Utterance Segment

Utterance segments are non-overlapping sequences of tokens that cover a whole utterance.
Each utterance (both users’ and bots’) can be divided into one or more segments. Individual
segments may have a different intent and dialogue act (see chapter 6), and they might be a
reaction to a different part of the previous conversation or a newly introduced direction of
the conversation. For example, a single segment utterance “Do you want to play a game?”
can be followed by a two-segment utterance “That sounds nice. What game do you offer?”.
It contains the segment “That sounds nice.”—confirmation of the previous proposal—and
the segment “What game do you offer?”—follow-up question.

Formally, we can modify a definition of the utterance to reflect the token assignment
to the individual segment in the following way.

U = (s, (t1, seg1), (t2, seg1), . . . , (tk, seg1), (tk+1, seg2), . . . , (tl, seg2), . . . , (tn, segm))

The utterance U consists of n tokens that are partitioned into m segments. Each segment
may have a different number of tokens.
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2.1.6 Session

A session or a conversational session is an ordered sequence of turns, each consisting of
a pair of utterances (as described above). The session is initiated by one of the speakers
and goes until either of the speakers ends it using an ending utterance or by abandoning
the conversation. In the bot–user scenario, we can examine the reason for the end of the
conversation and categorize it, for example, into the following categories: user ended the
conversation, user abandoned the conversation, the goal of the conversation is fulfilled, or
a system failure occurred.

Let’s denote S to be a session of length n and Ui to be an utterance, then

S = (U1, U2, . . . , Un)

2.1.7 Dialogues and Sub-dialogues

We define a dialogue to be a definition of the particular scenario that may occur during
a conversation between a bot and a user. In other words, it is a description that can be
directly used by the conversational system to drive the conversation to fulfill the desired
goal. It is important for the description to be in a format that can be consumed by the
particular system. The two most common description formats are the following:

1. Dialogue graph – A directed graph with various node types defining user intents,
bot speeches, functions, and more. Transitions between nodes define the flow of the
conversation.

2. Prompts – A natural language text describing the flow as the instructions for the
instruction-based large language models.

We define a sub-dialogue as a component of a larger dialogue structure characterized by
its nested position within the dialogue(s) that reference or embed other dialogues. In this
hierarchical arrangement, a main dialogue serves as the entry point and may reference other
sub-dialogues. This hierarchical structure contributes to the readability of the conversa-
tional application, reusability of the individual sub-dialogues, and better maintainability.
The sub-dialogue can be in both Dialogue graph and Prompt form.

2.2 Historical Conversational Systems

In this section, we describe historical approaches to conversational AI starting in the early
days of computer science and artificial intelligence research. The systems were able to sim-
ulate simple conversations and were originally based on rule-based and pattern-matching
methods. They were eventually replaced by machine-learning approaches as the technology
evolved.

We describe three specific conversational AI systems that are the major contributors
to the field from the historical perspective. The first system is ELIZA, created by MIT
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computer scientist Joseph Weizenbaum (1966). ELIZA was a simple program that used
pattern matching and substitution to simulate a conversation with a psychotherapist. The
second one is ALICE bot (Wallace, 2003). The bot was inspired by ELIZA, and its main
contribution is the Artificial Intelligence Modelling Language (AIML). The last system we
want to mention is IBM Watson (Ferrucci, 2012; Ferrucci et al., 2013), which contributed
especially in the field of question answering by winning the famous Jeopardy! TV show.

As the technology progressed, it started to be applied to more and more real-world use
cases. In the beginning, those use cases were more focused on single-turn commands or
simplified natural-language-like query language (section 2.2.3).

In recent years, the advancement of machine learning, Natural Language Processing
and other technologies have made it possible for the systems to progress to multi-turn
and context-aware conversational systems that can understand and respond to a wide
range of inputs in a human-like manner (section 2.3.2). These systems can be integrated
into various applications such as virtual assistants, customer service chatbots, and voice-
controlled devices. With the rapid growth of the internet and mobile devices, conversational
systems have become more widely used and accessible to the general public.

2.2.1 Eliza

ELIZA is a natural language processing computer program that simulates a conversation
with a psychotherapist. It was developed by Joseph Weizenbaum (1966) at the Mas-
sachusetts Institute of Technology (MIT). The program was designed to demonstrate the
potential of natural language processing and to explore the ways in which computers can
be used to mimic human communication.

ELIZA’s interactions with users are based on the theory of Rogerian psychotherapy
(Rogers, 1957), which emphasizes the importance of active listening and the use of open-
ended questions. When a user inputs a statement or question, ELIZA responds with
a generic, open-ended question or statement that is intended to encourage the user to
continue with the conversation. For example, if a user says “I feel sad,” ELIZA might
respond with “Can you tell me more about why you feel sad?”

The program uses a set of simple pattern-matching rules to generate its responses.
These rules are based on keywords and phrases in the user’s utterance, and they allow
ELIZA to respond in a way that is appropriate to the context of the conversation. ELIZA’s
pattern-matching rules are relatively simple and do not involve any deep understanding
of the meaning of the user’s utterance. However, the program is able to generate a wide
variety of responses, which can make it seem more sophisticated than it actually is.

ELIZA was one of the first programs to demonstrate the potential of natural language
processing and has inspired many other similar programs. The program was also used as
a tool to study human behavior, as it revealed the extent to which people are willing to
attribute human-like characteristics to computers. The program’s ability to engage users
in a seemingly meaningful dialogue, despite its simple rules, was seen as a demonstration
of the power of human imagination.
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2.2.2 Alice

ALICE is one of the systems inspired by ELIZA. It won Loebner Prize (Mauldin, 1994)
three times. The bot utilizes the Artificial Intelligence Modelling Language (AIML) (Wal-
lace, 2003) programming language. AIML allows developers to create conversational
agents, or chatbots, that can understand natural language input and respond in a human-
like manner. The ALICE chatbot utilizes AIML to define a set of categories that the
chatbot uses to understand user input and respond appropriately. These categories con-
sist of a pattern that the chatbot looks for in the user’s utterance and a template that
the chatbot uses to generate its response. The ability of the chatbot to understand and
respond to user input is determined by the number and complexity of categories that have
been defined in its AIML script.

One of the benefits of using AIML is that it is an open-source language that allows
developers to customize and modify the chatbot’s behavior easily. Additionally, the AIML
community has created a large library of pre-existing AIML categories that can be used
to train the chatbot as well as the interpreters written in various programming languages
quickly.

2.2.3 IBM Watson

IBM Watson, a pioneering computer system, emerged from IBM’s DeepQA project, led
by principal investigator David Ferrucci. Initially designed for question-answering, Wat-
son gained global attention by winning the Jeopardy! Quiz show in 2011 against the
two highest-ranked players in a nationally televised two-game Jeopardy! (Ferrucci, 2012).
Watson leverages IBM’s DeepQA software (Ferrucci, 2011) and the Apache Unstructured
Information Management Architecture (UIMA) framework (Ferrucci et al., 2009). Its suc-
cess and conceptual design inspired the NLP community to start research areas that were
not the primary research focus, such as information retrieval, structured knowledge repre-
sentation, and automated reasoning.

Notably, Watson’s capabilities expanded beyond Jeopardy! (Ferrucci et al., 2013), with
its first commercial application announced in 2013 for utilization management decisions
in lung cancer treatment at Memorial Sloan Kettering Cancer Center. IBM emphasized
Watson’s use of over 100 techniques to analyze natural language, identify sources, gen-
erate hypotheses, score evidence, and merge and rank hypotheses. In recent years, Wat-
son’s evolution has included new deployment models, enhanced machine learning capabil-
ities, and optimized hardware, transforming it into a versatile system capable of various
language-related tasks. This transformation pushed the system’s abilities beyond question-
answering, contributing to the broader landscape of conversational AI.

2.3 Natural Language Based Interfaces

Despite the significant milestones in conversational AI history, the technology was not
mature enough for the massively used multi-turn context-ware conversational systems until
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recently. However, simpler natural-language-based interfaces using command–response
approaches such as search engines and virtual assistants became popular at the beginning
of the 21st century.

2.3.1 Search Engines

Search engines started to be popular at the end of the 20th century when the Internet
started to be used on personal computers. The role of search engines as the entry point to
the World Wide Web and the main tool for retrieving information has undergone signifi-
cant evolution, with advancements transforming them into sophisticated natural language
interfaces.

In the 1990s, the first search engines, such as Archie, Gopher, or AltaVista, primarily
operated on keyword-based searches, requiring users to input queries using concise and
structured language (Seymour et al., 2011). The experience was rather slow. Google
Search, first launched in 1998, revolutionized the way people access information on the
internet. It addressed the issues of its predecessors and started creating an extensive index
of billions of web pages.

The main success (Seymour et al., 2011) of the Google search was due to their patented
PageRank algorithm (Page et al., 1998). Additionally, Google Search started using ad-
vanced natural language processing algorithms to quickly and accurately match users’
queries with relevant information. The NLP algorithms used for web search originally
included semantic parsing intent recognition and named entity recognition. The usage
of these algorithms started the shift from strict keyword-based queries to more natural-
language-like and even conversational ones, which contributed to a better user experience.
Another significant shift came with the concept of semantic search (Nayak, 2019). The
semantic search allowed users to find the desired web page even if they used different key-
words while they were semantically similar. This approach started to be massively adopted
since the introduction of transformer-based models (Liu and Lane, 2016) such as BERT
(Devlin et al., 2019).

Besides the understanding of context and meaning behind user queries, Google’s Knowl-
edge Graph (Singhal, 2012) was introduced in 2012, aimed to comprehend the relationships
between entities, enabling more context-aware responses, especially in the factual questions
such as “When was Barack Obama born?”

The historical progression of search engines from keyword-based systems to sophisti-
cated natural language interfaces has played a crucial role in shaping the landscape of AI
conversational systems. The integration of NLP, semantic search, and knowledge graphs
has not only enhanced information retrieval but has also influenced the design and capa-
bilities of modern conversational AI.

2.3.2 Virtual Assistants

Virtual assistants push forward the capabilities of natural language interfaces primarily
by introducing an ability to interact with them via voice and a wide range of use cases.
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They are rule-based and machine-learning-based applications that are designed to assist
and perform tasks for users. Virtual assistants are typically accessed through a device
such as a smartphone, tablet, or computer, and they can be used to perform tasks such
as scheduling appointments, setting reminders, making phone calls, sending messages, and
searching the internet.

They started to be popular in the early 2010s with the advancement of automatic speech
recognition (ASR) and text-to-speech (TTS) technologies. Large corporations started to
implement their own virtual assistants to provide their services via additional channels.
The key virtual assistant providers were originally Apple with Siri (2011), Google with
Google Now (2012), and Amazon with Alexa (2014). The strategy of Apple and Google
was to build the assistant in the mobile operating systems while Amazon created a custom
device called Echo, which is intended to be placed in households.

In the early days, virtual assistants were mainly powered by rule-based approaches with
pattern matching or by simple intent recognition algorithms. The technology level allowed
users to interact with the in a command–response manner. This type of interaction does
not require working with a context of previous turns or sessions but only extracts the
information from the current utterance. The single utterance commands then progressed
to multi-turn form-filling-like conversations to naturally get additional information from
the user by asking questions to fulfill the command successfully. This typically includes
the combination of intent recognition and entity (slot) recognition algorithms.

One of the key features of virtual assistants is the integration of various external services
such as web search, calendars, note-taking applications, reservation systems, and more.
However, when the number of operatable services is high, intent recognition and service
disambiguation become challenging. There are multiple ways to deal with this issue. For
example, Alexa comes with the concept of invocation words for identifying a particular
service. Specifying the invocation words as the name of the service is inconvenient as the
user needs to remember the exact phrase. To conveniently recognize the desired service
from the context, the virtual assistants need to use advanced machine-learning approaches,
including the Large Language Model, for both response generation and service calls. The
companies behind virtual assistants are slowly adopting these approaches, but the overall
user experience still relies mostly on the more straightforward approaches. The LLMs (as
in the other use cases) have a big potential to push the capabilities more towards the
natural conversation (Dong et al., 2023).

2.4 Recent Approaches in Conversational Systems

In the 2010s, neural networks started to play a significant role in the field of conversational
systems. The traditional approaches used before struggled to capture the complexity and
nuances of natural language, limiting the development of complex and contextual dialogue
systems. Neural networks, with their ability to model patterns and dependencies in data,
brought new possibilities for working with context in conversational systems. Recurrent
neural networks (RNNs) especially Long Short-Term Memory (LSTM) (Hochreiter and
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Schmidhuber, 1997) introduced possibilities to model patterns in sequential data, even for
long sequences. With the attention mechanism (Bahdanau et al., 2014), it gave birth to
the Sequence–to–Sequence (Seq2Seq) model with an encoder–decoder architecture. The
architecture debuted originally in machine translation task (Sutskever et al., 2014) where
the input to the network is an utterance in the source language, and the output is the
utterance in the target language, whereas while used in the conversation systems, the
input is a user utterance and the output is the response of the system.

The baseline framework is proposed by Vinyals and Le (2015). It is a plain Seq2Seq
architecture that is trained on the helpdesk chat service and Opensubtitles dataset. The
drawbacks presented in the paper include short and generic responses and inconsistent
personality. The responses could also be inconsistent for questions that are not identical
but are semantically similar.

Wu et al. (2018) proposed an approach that tries to control the response generation by
incorporating dialogue acts. The solution consists of two models: a generative network for
the response generation and a policy network for the dialogue acts. The dialogue acts, as
the additional input for the generative networks, improve the response quality by enabling
the response to be generated differently for statements, questions, or context switch acts.

In human–human conversations, people tend to use the same words mentioned in the
previous utterances to some extent. The Seq2Seq models fail to generate such words as
they typically work only with the latent representation of the utterance, and the decoder
part does not interact directly with the words. The copying mechanism proposed by Gu
et al. (2016) tries to mitigate this problem. The task for the models is to decide when to
generate the word and when to copy it from the original utterance.

The Seq2Seq models with RNN or LSTM-based encoders and decoders have typically
been trained on the conversational data relevant to the specific use case as the network
architecture is not suitable for pretraining on a large corpus of natural language data
to learn language patterns without forgetting them while fine-tuning. The Transformer
architecture introduced by Vaswani et al. (2017), with its parallelization capabilities, al-
lowed the creation of bigger models and addressed the mentioned limitations of traditional
Seq2Seq models. One of the biggest advantages of the transformer models is the possibility
of effectively using transfer learning instead of learning the desired task from scratch. The
transformer architecture has been a standard for NLP models in various tasks, includ-
ing the sub-task for conversational systems (intent recognition, named entity recognition,
. . . ) and end-to-end conversational systems. The pre-trained models benefit from already
learned language patterns, allowing the downstream tasks to be trained using smaller data
sets.

The trend with the reduction in the data amount needed for model training even-
tually resulted in few-shot and zero-shot models. Popularized by OpenAI’s Generative
Pre-trained Transformer (GPT) 3 by Brown et al. (2020), the approach represents a signif-
icant shift in the capability of models to perform tasks without explicit training for them.
This approach introduces a new dimension to conversational systems, allowing them to
generalize and adapt to a wide range of tasks with minimal supervision. A model can take
a prompt as an input where the desired input is described in a natural language (zero-shot
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learning). Additionally, the prompt may contain a few examples of mapping the input to
the output (few-shot learning).

2.5 Conversational Systems Categorization

The conversational systems and their underlying research are commonly divided into two
categories based on the purpose of the system: goal-oriented systems and open-domain
systems. A goal-oriented system typically follows a scenario to fulfill a predefined goal or
multiple goals. As it typically requires gathering certain information, additional algorithms,
such as slot-filling, must be implemented compared to the open-domain systems. On the
other hand, open-domain systems require a significant amount of conversational data to
train a system that is robust enough.

2.5.1 Goal-Oriented Systems

Goal-oriented systems refer to conversational systems that are designed to achieve a specific
task or objective, such as a room or table reservation (Pateras et al., 1999), technical
support (Vinyals and Le, 2015), or providing tourist guidance (Mrkšić et al., 2016). These
systems usually require users to provide specific information to the chatbot, which is then
used to fill predefined slots with specific values. This process is commonly referred to
as “slot-filling.” The main objective of a goal-oriented dialogue system is to fill all the
required slots using the lowest number of dialogue turns possible.

The system has a specific goal or a predefined set of goals. Each goal has a corresponding
set of values that need to be obtained from the user to achieve the goal. Therefore, the
key aspect of the system is its ability to understand and interpret user input and extract
desired values. Moreover, for a fluent conversation, it is critical for the system to recognize
multiple values from a single utterance instead of asking redundant questions.

Once the required values are extracted, they are typically used to create a query in a
database or call a service that performs a particular action. The database or service usually
returns a value or values that need to be presented to the user. The information is processed
by the Natural Language Generation (NLG) part of the system. The NLP typically uses
sentence templates or the encoder–decoder models described earlier. Additionally, Large
Language Models (LLMs) play a significant role in response generation, as they are strong
in considering the context as well as the actual variable values.

The traditional architecture described above, consisting of natural language under-
standing for value extraction, dialogue management for action selection (e.g., database
query), and natural language generation for presenting the output to the user, has been
used for years. With the rise of LLMs, it still remains relevant, with the only difference
being that each part of the framework may be handled by the same LLMs with an ap-
propriate prompt. The LLMs allow faster development of these systems as they don’t
require large sets of training data. However, the downside of these models is the hardware
requirements that are significantly higher than using simpler models.
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2.5.2 Open-Domain Systems

In contrast to goal-oriented systems, open-domain systems are designed to handle a wide
range of topics and user queries without a specific predefined task. The goal is to keep
an engaging conversation as long as possible (Ram et al., 2018). There is no success or
failure at the end of the conversation, and there is a focus on natural responses. Users can
only give a rating based on their subjective impression. The systems have been historically
based on end-to-end architecture (described later) using a single model trained on a large
corpus of conversation data. With the recent advancement of capabilities of the end-to-end
systems mostly driven by LLMs, the open-domain system gained more popularity. Various
mobile apps offering virtual friends or even a relationship partner have emerged on popular
platforms.

Additional techniques allowing the model to be enriched by additional information
started to be used frequently recently. The techniques are mostly based on Retrieval
Augmented Generation (RAG) (Gao et al., 2023a).

2.6 Conversational Systems Architectures

2.6.1 End-to-end Systems

An end-to-end dialogue system is a type of conversational AI that is designed to handle the
entire process of understanding and generating natural language for the purpose of carrying
out a conversation. This process includes understanding the user’s intent, generating an
appropriate response, and delivering that response in a natural and conversational manner.

End-to-end dialogue systems are typically based on neural network architectures, such
as Recurrent neural networks (RNNs) (Wen et al., 2017) and transformer models (Vaswani
et al., 2017; Radford et al., 2018, 2019; Brown et al., 2020). These architectures are trained
on large datasets of conversational data to learn patterns in human language and how to
generate appropriate responses.

The original research on end-to-end dialogue systems was focused on encoder-decoder
architecture (Cho et al., 2014). The encoder takes in the input sentence and encodes it into
a fixed-length vector representation that captures the meaning of the sentence. The decoder
then takes this vector representation and generates an appropriate response. Recent LLMs
such as GPTs simplify the architecture by using only the decoder part (Radford et al.,
2018, 2019; Brown et al., 2020).

End-to-end dialogue systems can be used in a variety of applications, including chatbots,
virtual assistants, and customer service systems. They can be integrated into websites,
mobile apps, and other platforms to provide users with a natural and convenient way to
interact with the system. Their main advantage is that they can handle a wide range of
inputs and generate natural and appropriate responses without the need for rule-based
systems or manual scripting. However, these systems still have some limitations, such as
the need for large amounts of training data and the difficulty of handling more complex
tasks and scenarios.
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Overall, end-to-end dialogue systems are an advanced form of conversational AI that
has the potential to greatly improve the user experience in a variety of applications. With
the continued advancement of neural network architectures and the availability of large
amounts of training data, it is likely that end-to-end dialogue systems will continue to im-
prove and become an increasingly important part of our daily interactions with technology.

2.6.2 Modular Systems

Modular dialogue systems are designed with a modular architecture, where different com-
ponents or modules handle specific aspects of the dialogue process. The components are
typically trained separately on a domain-specific datasets. A single dialogue turn is pro-
cessed sequentially by all of the components. The typical flow is shown in Figure 2.1, and
the individual components will be described in detail in section 2.7. Sequential process-
ing is often required by certain components requiring the outputs from the previous ones.
When the dependency is not necessary, parallelization may be implemented to speed up
the process.

The modular approach often comes along with a set of lightweight components com-
pared to a monolithic end-to-end model. It allows the individual components to be trained
on a smaller amount of specific data. This approach is more suitable for goal-oriented
systems where a large amount of in-domain conversational data is not typically available.
The datasets for the individual components can be created by domain experts to bootstrap
the initial versions of the system. The modularity also allows the inclusion of the addi-
tional optional components required for specific domains only. The typical examples are
domain-specific classifiers, e.g., emotion detection for psychologically oriented dialogues.

2.6.3 Hybrid Systems

In hybrid dialogue systems, the architecture is designed to take advantage of the strengths
of both end-to-end and modular approaches. The end-to-end approach ensures the ability
to respond to a wide range of utterances by leveraging pretraining on large dialogue datasets
without relying on hand-crafted rules or separate components. On the other hand, modular
approaches divide the dialogue process into separate components, each designed to handle
a specific task in an easily modifiable way. This allows for more explicit control over
individual components and a more structured approach to development.

The critical point of the hybrid system is the logic that combines the end-to-end model
with the individual components. Switching the approaches comes with the challenges of
sharing the context, i.e., the information extracted using the other component. Moreover,
the modular system may use templated responses, and the fluent combination of these
responses with the ones generated by the end-to-end approach may not be straightforward.

The strengths of this approach are that it is used in scenarios where the end-to-end
approach grants the ability to respond to unexpected utterances in a reasonable way while
the modular approach precisely drives the conversation in a designed way. We focus on
this scenario in more detail in the following chapters of this thesis.
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2.7 Modular Architecture Components

As outlined above, the modular architecture consists of various modules that we want to
describe in more detail in this section. The modules work together to perform specific tasks
that are divided into the following high-level categories: Natural Language Understand-
ing (NLU), Dialogue Management (DM), and Natural Language Generation (NLG). These
modules can be combined in different ways, but the canonical information flow is illus-
trated in Figure 2.1. Additionally, short-term storage—usually called context—long-term
storage—usually called profile—and knowledge base are used for storing the information
and using it in the conversation. In the case of voice-enabled applications, the Automatic
Speech Recognition (ASR) and Text to Speech (TTS) components are at the beginning or
at the end of the flow, respectively.

Text response

Automatic Speech
Recognition Natural Language

Understanding

Dialogue
Management

Reponse
Selection/Generation 

Text to Speech

Context

Profile + 
Knowledge

source

Figure 2.1: The overview of modular dialogue system architecture

2.7.1 Natural Language Understanding

Natural Language Understanding (NLU) is the family of tasks related not only to the
conversational system but also to other parts of NLP. In the conversational systems, the
NLU algorithms process the utterance at the beginning of the pipeline. Their results are
critical for further processing. In voice-enabled systems, the algorithms often work with a
text transcript produced by ASR or multiple ASR hypotheses if available. Additionally,
the understanding can be done using the audio of recorded voice or a combination of
both. This is useful for tasks such as emotion recognition (Trinh Van et al., 2022) as the
information about the emotion lies in the voice tone more than in the actual content of
the speech.

The most essential component of NLU is the intent recognition. It categorizes the
utterance into one of the intent classes, which influences further processing. Additional
components may include:

◦ Entity Recognition and Slot Filling – Extracting relevant entities and filling semantic
slots from user utterances to capture important pieces of information necessary for
task completion or context understanding within the conversation.
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◦ Dialogue Act Detection – Recognizing the communicative actions or speech acts
performed by speakers in a conversation. This includes categorizing utterances into
different dialogue acts, such as questions, statements, requests, acknowledgments,
etc., to better understand the structure and flow of the dialogue.

◦ Sentiment Analysis – Analyzing the sentiment expressed in user utterances to de-
tect emotions, attitudes, or opinions, which can influence the tone and style of the
conversational system’s responses.

We describe the most important component in more detail in the following subsections.

2.7.2 Intent Recognition

Intent recognition in dialogue systems is the process of identifying the intent or goal of a
user’s spoken or written input. It is a critical component of natural language understand-
ing in dialogue systems, as it allows the system to determine what the user is trying to
accomplish and respond appropriately.

Since intent recognition is the text classification task, it leverages the algorithms and
model architecture for this task type. Text classification relies on two main aspects: text
representation and the actual classification model. The first systems used Bag of Words
(BOW) or N-grams (Lee et al., 2013) as the text classification method. Coupled with
similarity metrics or classification models such as Logistic regression or Support Vector
Machines (SVM), it forms a baseline approach. Additional features such as part-of-speech
tags (Voutilainen, 2003), sentiment, topics, or dependency parses (Nivre, 2010) were often
used to improve the overall performance. Moreover, the preprocessing of the input, such
as removing stop words, has been a highly leveraged step (Uysal and Gunal, 2014).

With the introduction of a text representation capturing the semantics (Mikolov et al.,
2013b; Pennington et al., 2014; Bojanowski et al., 2017; Wu et al., 2017), the need for fea-
ture engineering and preprocessing became lower. This type of representation is suitable to
be processed by neural networks to learn the downstream task. Additionally, the amount
of data needed for the model training is lower thanks to the pertaining of the representa-
tions on a large unlabeled text. The neural architectures used for text classification often
leveraged convolutional (Kim, 2014) or recurrent units (Ravuri and Stolcke, 2015).

Recent advances in neural architectures, especially the introduction of a transformer
architecture (Vaswani et al., 2017), have led to more effective language representation. The
models such as BERT, Albert, DistilBert (Devlin et al., 2019; Lan et al., 2019; Sanh et al.,
2019) and GPT-3 (Brown et al., 2020) are some of the most popular nowadays and achieve
the state-of-the-art performance on various text classification tasks.

2.7.3 Entity Recognition

Entity recognition in dialogue systems is the process of identifying and extracting specific
pieces of information, known as entities, from natural language text. These entities can
include proper nouns, such as person or location names, as well as numerical values, such as
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dates or monetary amounts. The goal of entity recognition is to enable a dialogue system
to understand the meaning hidden in the text spans representing the entities.

Entity recognition is a token classification task where each token is tagged as an entity
or not. More specifically, each token is tagged with either Inside, outside, begin (IOB)
(Ramshaw and Marcus, 1999) tag to distinguish non-entity tokens, a first token belonging
to a particular entity, and additional entity tokens. Additionally, there could be an entity
type tag for each entity token resulting, for example, in “B-city, I-city, O” tags.

The original approaches leveraged dependency parsing (Nivre, 2010) to identify nouns
and noun phrases that could be later matched with the list of anticipated entity tokens.
However, this approach requires the list of entities to be known, which is often not the case,
or they cannot be easily enumerated. Similarly to intent recognition, entity recognition
leverages the text embedding representation, capturing the semantics. With the popular-
ization of the LSTM-based (Hochreiter and Schmidhuber, 1997) neural networks, these
models started to be used for entity recognition as their strength is the ability to capture
dependencies in longer sequences. The bidirectional LSTM layer is used to handle the
dependencies in both directions in the utterance. Additionally, the Conditional Random
Field (CRF) layer (Huang et al., 2015) is used to model dependencies among the output
classes. Another approach (Kurata et al., 2016) takes advantage of encoder–decoder ar-
chitecture to encode the input sentence into a fixed-length vector that is used as the input
for the decoder layer. The decoder layer then operates with the information from the
whole sentence. The most recent approach also leverages transformer-based architectures.
In comparison to the text classification, the model has been modified head to label each
token individually. Few-shot approaches (Fritzler et al., 2019) aim to lower the amount of
needed training data.

As intent detection and entity recognition depend on each other, several combined
approaches were proposed. A similar approach to the entity recognition itself can be
applied to the combined recognition. The only modification is that the end-of-sentence
token is tagged with the intent (Hakkani-Tür et al., 2016). Another approach is to modify
the encoder–decoder architecture by adding a second decoder for the intent, which shares
the same encoder with the entity-tagging decoder (Liu and Lane, 2016).

2.7.4 Dialogue Acts Detection

Dialogue act detection is the task of identifying the communicative intention behind an
utterance in a dialogue. It involves categorizing the utterance into one of several predefined
dialogue acts, such as informing, confirming, or requesting. Dialogue act detection is an
important component of dialogue systems, as it helps the system understand the user’s
goals and intentions and respond accordingly.

Dialogue act detection can be performed using various techniques, including rule-based
methods, machine learning algorithms, and neural networks similar to intent recognition.
In rule-based methods, hand-crafted rules are used to identify the dialogue act based on
features such as word frequency, part-of-speech, and syntax (Yeh, 2016). Machine learning
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algorithms use labeled training data to learn the mapping between utterances and dialogue
acts. The state-of-the-art approaches are described later in chapter 6.

Dialogue act detection is often used in addition to other natural language processing
tasks, such as intent classification, entity recognition, and sentiment analysis, to provide a
more complete understanding of the user’s inputs. This information can be used to inform
the system’s response generation process, allowing for more context-aware and human-like
responses.

2.7.5 Additional Classification

The additional classification is not essential for the processing of the modular conversational
system. However, for some use cases, the selected classifiers may improve the overall NLU
accuracy or be beneficial for further processing. The additional classification tasks are, for
example:

◦ Emotion classification – the task of recognizing and categorizing the emotional state
of a speaker from their speech or text. This involves detecting the presence of emo-
tions such as happiness, sadness, anger, fear, surprise, and others. The results of
emotion classification can be used to improve the user experience in conversational
systems, analyze public opinion, and develop applications that can respond to the
emotional state of users.

◦ Topic classification – the task of identifying the topic or subject matter of a text or
speech. This involves assigning the text to one or more predefined categories, such
as sports, politics, entertainment, and others.

◦ Topic-specific classification – classification of topic-dependent aspects. This is closely
connected to intent recognition, which is also dependent on the current topic. How-
ever, topic-specific classification is relevant throughout the discussion of the particular
topic, while specific intent is relevant only in a part of the topic. The example is a
product classification for a company-specific dialogue system.

2.7.6 Dialogue Management

Dialogue management is the process of controlling the flow of a conversation between
a dialogue system and a user. It involves deciding what action the system should take
based on the user utterance and consequent NLU annotations. It can be performed in
different ways, including rule-based systems, finite-state machines, and machine learning-
based systems.

In rule-based systems, the dialogue management process is defined by a set of hand-
crafted rules (Allen, 1995) that specify how the system should respond to different inputs.
This is a straightforward approach considering the reasonable amount of intent classes,
entity categories, and additional classifications. The mentioned tasks represent the NLU
annotations combinations that can be directly mapped to the dialogue actions. Finite
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state machines extend rule-based systems, where the dialogue is modeled as a series of
states and transitions (Larionov et al., 2018). These systems allowed for more dynamic
and context-sensitive responses by encoding dialogue policies as state transitions.

Machine learning-based approaches take advantage of both supervised learning and
reinforcement learning. An approach called Neural Belief Tracker is proposed by Mrkšić
et al. (2016). It assumes each intent–entity pair determines the action of the bot unam-
biguously and learns the policy that maps the pairs to the output actions. Reinforcement
learning algorithms such as Markov Decision Processes (MDPs) and Partially Observable
Markov Decision Processes (POMDPs) were applied to learn optimal dialogue strategies
through interaction with users (Young et al., 2013). These approaches enabled more adap-
tive and data-driven dialogue management but required significant amounts of training
data and computational resources. Additionally, Li et al. (2017) proposed a system lever-
aging end-to-end reinforcement learning approach for both DM and NLU. The system
uses a combined intent-entity model, as described earlier in this chapter. Next, DM uses
the output from NLU to construct a query to the knowledge base and to determine the
next action. NLG is a part of the user simulator, (Schatzmann et al., 2007) which uses
both template-based and sequence-to-sequence generated utterances. The actual DM is
represented as Deep Q-network (DQN) (Mnih et al., 2015). Instead of the user simulator,
the labeled data for supervised learning can be used as proposed by Williams et al. (2017).

Recent advancements in neural networks driven mainly by transformer-based architec-
ture have also impacted dialogue management. End-to-end neural dialogue systems use
neural networks to directly map user inputs to system responses without explicitly mod-
eling dialogue states (Serban et al., 2017). Sequence-to-sequence models and attention
mechanisms have been employed to learn effective dialogue policies from raw conversa-
tional data. These approaches offer improved performance and scalability compared to
traditional methods, especially in handling complex and diverse dialogue scenarios (Bor-
des et al., 2016).

2.7.7 Recommendation

The recommendation in dialogue systems refers to the process of suggesting items or actions
to a user based on their past behavior or preferences. This can be used to personalize the
user experience and make it easier for them to find a suitable topic of discussion. It is very
important in open-domain dialogue systems as the users may not be aware of the system’s
capabilities and, therefore, struggle with proactive suggesting of new topics. In a dialogue
system, the recommendation can be integrated as a component that provides suggestions
at the beginning of the conversation and during the conversation when a particular topic
ends and a new one needs to be suggested.

There are several types of recommendation algorithms that can be used in dialogue
systems. Content-based (Lops et al., 2011) is one of the types that is based on the charac-
teristics of the items being recommended. It recommends items or actions that are similar
to those that a user has liked or interacted with in the past. In dialogue systems, this ap-
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proach can be used to recommend responses or topics based on the content of the current
conversation and the user’s long-term profile.

Another approach is Collaborative filtering (Resnick and Varian, 1997) that recom-
mends items or actions based on the preferences of similar users. In dialogue systems, this
approach can be applied to recommend responses or topics based on the users with similar
values storied in their profile or with similar conversational histories.

The additional approaches include a hybrid recommendation (Burke, 2002) where both
content-based and collaborative filtering are leveraged. Also, additional values that are
relevant for the current context (Adomavicius and Tuzhilin, 2010) rather than for the
long-term user profile are useful in the dialogue systems since this contextual information
may change rapidly over time. This includes the emotional state of the user, current topic,
sentiment of the utterances, or even location.

2.7.8 Natural Language Generation

Natural language generation is one of the final components in a modular dialogue system
pipeline. It is responsible for forming a natural language response given the output of
previous components, especially the dialogue management output. Given the finite number
of the possible DM actions, the straightforward approach is to use a predefined set of
templates for each action. Each template contains placeholders, which are eventually
replaced by entity or slot values. There can be multiple templates for a single action to
mitigate repetitiveness that can be chosen randomly or based on the similarity with the
previous context.

To avoid handcrafted responses, the Sequence–to–Sequence (Seq2Seq) models (Cho
et al., 2014) were proposed. The input sequence consists of an action name and a list of
entity type and entity value (slot name, slot value) pairs. The input is decoded using an
LSTM decoder (or another neural network architecture such as transformer-based), which
outputs the hidden representation of the whole utterance. The decoder is then initialized
with the last hidden state of the encoder, and based on the previously generated token and
the previous hidden state, it generates the output. To incorporate the information about
the whole input in every decoding step, the attention mechanism (Bahdanau et al., 2014)
is used.

The improvements proposed by Dušek and Jurč́ıček (2016) use the contextual utter-
ances to avoid repetitiveness and generate the sentences in a way that reflects the previous
statements. The first approach is to simply concatenate previous user utterances with the
intent-slot-value representation. The second approach requires a different decoder for the
contextual utterance. The results of both of the decoders are then concatenated. The last
proposed approach is to use a ranker for the k-best-generated results. The ranker gives
a higher rank to the utterances based on the common n-gram with the preceding user
utterance. This approach selects more natural responses as they use a similar structure to
the previous sentence.

The transformer architecture (Vaswani et al., 2017) contributes to the NLG significantly
and more impactfully compared to the other fields of NLP. The extensive pre-training
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allowed the models to produce meaningful responses only with data-efficient fine-tuning.
One of the models is Text-to-Text Transfer Transformer (T5) (Raffel et al., 2020). It is a
versatile transformer-based encoder–decoder model that frames all NLP tasks as text-to-
text tasks. In the NLG segment, T5 can be trained in a text-to-text manner where the
input text includes the dialogue history and a special token indicating the system’s turn,
and the output text is the generated response.

Generative Pre-trained Transformer (GPT) architecture (Radford et al., 2018) is un-
doubtedly one of the most popular model architectures used by a wide public. It used
decoder-only transformer architecture, and its later versions (Brown et al., 2020; Ope-
nAI, 2022) have shown an impressive performance in response generation tasks. However,
the response generation is not focused on conversational systems in plain GPT models.
Therefore, focused models such as (Zhang et al., 2019) have emerged. It is trained on con-
versational data and optimized for generating human-like responses in dialogue scenarios
and fine-tuned with additional dialogue-specific objectives to improve response quality and
coherence.

2.7.9 Retrieval Augmented Generation

Even though Neural response generation based on the machine learning model has pro-
gressed significantly, as described in the previous subsection, they tend to generate non-
specific and sometimes non-relevant responses. The models themselves can only use the
information included in the training data. It also depends on the model’s capacity and
whether it can hold all the relevant information.

Retrieval Augmented Generation (RAG) (Gao et al., 2023b) combines the retrieval ap-
proach with response generation in a way the input for the generative model is enriched
via retrieved information. The information may be retrieved using various methods such
as keyword matching or full-text search, but the most popular is a semantic search method
(Guha et al., 2003). The semantic search is strong in finding semantically similar chunks
of text but cannot extract the exact information. Additionally, it may fail to distinguish
between semantically close chunks of text. To mitigate the issue, multiple matched can-
didates are propagated into to generation step. The generative model then extracts the
relevant information. This preselection is important as the information source may be large
and cannot be fitted into the input of the model.
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Chapter 3

Natual Language Processing Algorithms

In this chapter, we describe the machine learning algorithms from the Natural Language
Processing (NLP) field that are relevant to the conversational AI described in this thesis. As
the thesis is focused on Natural Language Understanding, we will describe the algorithms
from that part. However, many of the modern model architectures can be effectively used
across NLP fields, and especially models primarily used for Natural Language Generation
(NLG) can be used for understanding as well with an appropriate mapping of the results.
Even the Large Language Models (LLMs) are among the most performing model types
recently, we also focus on the other model architectures and approaches since the balance
between the model’s resource consumption and the actual performance is critical for this
thesis and for the production use of the conversational systems.

The overview outline of this chapter is as follows:

1. Text Representation – a method for converting text data into sparse or dense vector
formats. Typically used for similarity measuring or as an input for the bigger model.

2. Traditional Machine Learning – non-neural models such as logistic regression or SVM
that typically take the vector representation of the text as an input. Suitable for use
cases where training and inference time are critical.

3. Neural Networks – feed-forward, recurrent, convolutional, or transformer-based model,
using the text representation or representing the text inside the model.

4. Large Language Models – transformed-based models with millions or billions of pa-
rameters with extensive pretraining.

3.1 Text Represenation

Text representation in machine learning involves converting raw text data into numerical
vectors or matrices that can be processed by machine learning algorithms. This process,
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also known as feature extraction or vectorization, aims to capture the semantic and syn-
tactic information present in the text while preserving its underlying structure. However,
some of the original methods are not designed to capture the semantics but work with the
representation only on a vocabulary level. Common techniques are described in subsec-
tion 3.1.2.

3.1.1 Tokenization

Tokenization is a intial task in NLP that involves breaking down a text (a sequence of
character) into smaller units, typically words, subwords, or individual characters, known
as tokens. The set of tokens then for a vocabulary and each token can be represented as
an index in the vocabulary.

In word-level tokenization, the input text is segmented into individual words based
on whitespace or punctuation boundaries. However, word-level tokenization may not be
sufficient for inflection languages as the the resulted vocabulary size would be to high. Sub-
word tokenization addresses this limitation by breaking down words into smaller linguistic
units, such as prefixes, suffixes, or stems. This approach enables more effective handling of
out-of-vocabulary words and improves the generalization capability of NLP models. Tech-
niques like Byte Pair Encoding (BPE) (Gage, 1994) and WordPiece (Wu et al., 2016) are
commonly used for subword tokenization. Character-level tokenization, on the other hand,
segments the input text into individual characters. The word or sub-word representation
need to be learn as part of the model leveraging this input type.

3.1.2 Represeantation Methods

1. One-hot encoding: This method creates a binary vector for each unique word in the
text data, with a ‘1’ in the position of the corresponding word in the vocabulary and
a ‘0’ in all other positions. This method does not capture the relationships between
words or the semantic meaning of the text.

2. Bag of Words: Similarly to the one-hot encoding, BOW is a vector with a length of
the size of the vocabulary. Each position contains a number of occurrences of the
corresponding word in the input text.

3. Term frequency-inverse document frequency (TF-IDF): This method represents text
as a numerical vector based on the frequency of each word in the text data. The
TF-IDF value for a word is calculated as the product of its term frequency (TF) and
the inverse document frequency (IDF), which measures the rarity of the word across
the entire text corpus.

4. Word embeddings: This method represents words as dense, continuous-valued vectors
in a high-dimensional space. The vectors are trained on large text corpora using tech-
niques such as neural language models, and they capture the semantic relationships
between words and their context in the text data.
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5. Sentence embeddings: This method represents entire sentences or documents as a
single vector, capturing the overall meaning and context of the text data. Sentence
embeddings are often created by averaging the word embeddings of the words in the
sentence or by using advanced techniques such as transformers.

In summary, text representation in machine learning is an important step in converting
raw text data into a format that can be used for training and evaluating machine learning
models. The choice of text representation method depends on the specific requirements of
the machine learning task and the resources available for processing the text data.

3.1.3 Text Embeddings

Word embeddings are a type of representation for words used in natural language process-
ing tasks. They map words to dense, continuous vectors of numbers, allowing them to
capture the meaning and semantic relationships between words. In contrast to one-hot en-
coded representations, which assign a unique binary vector to each word, word embeddings
provide a compact, dense representation of words that can capture both their syntactic
and semantic relationships. Sentence embeddings have the same goal but on the scope of
a whole sentence.

Figure 3.1: CBOW and Skip-gram architectures (Suleiman et al., 2017)

Word2Vec is a popular word embedding technique that was introduced by Mikolov
et al. (2013a). It uses a shallow neural network to learn the relationships between words
in a large corpus of text. The network takes a word as input and predicts the surrounding
context words, allowing it to capture the meaning and context of a word. Word2Vec can
be trained using two methods, Continuous Bag of Words (CBOW) and Skip-Gram, each
with its own strengths and weaknesses.
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Global Vectors for Word Representation (GloVe) is another popular word embedding
technique that was introduced by researchers at Stanford University (Pennington et al.,
2014). It combines the advantages of Word2Vec with a global log-bilinear regression model
that considers both word-word co-occurrence statistics and word context information. This
results in embeddings that capture not just local context but also the global semantic
relationships between words.

FastText is a word embedding technique introduced by Mikolov et al. (2018). It is
designed to handle out-of-vocabulary words, which are words that are not present in the
training data, by breaking words down into subword units or characters. This allows
FastText to handle morphologically rich languages, such as those that have many affixes,
and also handle rare or unknown words. FastText operates by training a simple neural
network to predict the probability of a word given its surrounding context words, much
like Word2Vec. The main difference is that FastText uses character n-grams in addition
to whole words as input to the network, allowing it to better handle rare or unseen words.

Embeddings from Language Models (ELMo) is a more recent embedding technique
that was introduced by researchers at the Allen Institute for Artificial Intelligence (Peters
et al., 2018). ELMo uses deep bidirectional language models to generate context-sensitive
representations of words. The approach involves fine-tuning a pre-trained language model
on a specific task, allowing the embeddings to be tailored to the task at hand and to
capture task-specific information.

Universal Sentence Encoder (USE) (Cer et al., 2018) is a sentence embedding with a
focus on transfer learning to other NLP tasks. It is introduced in two variants: Deep
Average Network (DAN) and transformer-based (TRAN). Two variants of the encoding
models allow for trade-offs between accuracy and compute resources.

In addition to the native sentence embeddings such as USE, the popular method for
representing a whole sentence is to use an average or TF-IDF-weighted average of individual
word vectors.

3.2 Semantic Text Similarity

Semantic text similarity is the task of determining the degree of similarity between two
pieces of text based on their meaning, as opposed to their surface-level features such as
word count or word overlap. There are different approaches to measure semantic similarity
based on the selection of text representation and a similarity function. The typical text
representation for semantic text similarity is the usage of text embeddings, as described in
the previous section.

One of the popular similarity functions used along text embeddings is the cosine simi-
larity.

cos (θ) =
w1 ·w2

||w1|| ||w2||
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Alternatively, neural network-based models such as Siamese networks or Transformer mod-
els can also be used to measure semantic similarity by comparing the representations of
the two texts generated by the models. The neural network can be used to compute just
the similarity using the text embeddings or combine the learning of the text representation
with the actual similarity estimation. When using a neural network to encode a text input,
we can use two approaches: Bi-encoder and Cross-encoder. The former encodes each text
in a pair by an individual or shared encoder and produces two representations. The latter
encodes the pair as a whole, resulting in a single representation. While the cross-encoder
may achieve better accuracy in certain scenarios, the bi-encoder is suitable for scenarios
where the set of representatives should be encoded during the system initialization, and
then the already encoded representations can be compared to the query at the runtime.
This saves the computation resources for creating the representations of a rarely changing
set of representatives.

3.3 Traditional Machine Learning

Traditional machine learning in NLP typically involves the use of statistical and proba-
bilistic models, as well as feature engineering techniques, to process and analyze text data.
These methods often rely on handcrafted features extracted from text, such as one-hot
encodings, Bag of Words, n-grams, part-of-speech tags, or syntactic patterns. Common
algorithms used in traditional NLP include Support Vector Machines (SVM), Naive Bayes
classifiers, decision trees, and logistic regression. While these approaches have been success-
ful in many NLP tasks, they often require extensive feature engineering and domain-specific
knowledge and may struggle to capture complex linguistic patterns and semantics present
in natural language. However, when combined with a robust enough text representation
using pre-trained models on large corpora of a language, they may form a strong baseline
that is significantly more computationally effective compared to the complex neural net-
works. The resource effectiveness is beneficial for real-time applications such as chatbots
or voice bots. Additionally, the training time is significantly shorter, allowing the dialogue
creators to prototype rapidly.

3.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of artificial neural network that were
originally developed for image processing tasks. However, they have also been adapted and
applied to a wide range of NLP tasks (Kim, 2014).

In NLP, CNNs are used to process and analyze text data by treating it as a 2D grid
of words, where each word is represented by a vector. The convolutional layer applies a
convolution operation to the input data, which detects local patterns or features in the text
data. The pooling layer reduces the dimensionality of the data by aggregating the output
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Figure 3.2: CNN architecture for a text classification task (Kim, 2014)

of the convolutional layer over a small window. The fully connected layer then combines
the output of the pooling layer and produces the final output of the CNN.

One of the key advantages of CNNs in NLP is their ability to learn hierarchical rep-
resentations of text data. The convolutional layers learn local patterns or features in the
text, while the deeper layers learn more global patterns or features. This allows CNNs to
achieve high accuracy in tasks such as text classification, sentiment analysis, and named
entity recognition.

Overall, CNNs have been successfully applied to a wide range of NLP tasks and have
shown to be a powerful tool for understanding and analyzing text data. However, they
have recently been replaced by more effective transformer-based models.

3.5 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of artificial neural network that are partic-
ularly well-suited for processing sequential data, such as text or speech. They are able to
handle variable-length input sequences and maintain a hidden state that captures infor-
mation about the past elements of the sequence.

In NLP, RNNs are used to process and analyze text data by treating it as a sequence of
words, where each word is represented by a vector. The RNN processes each word in the
sequence one at a time, updating its hidden state at each step. The hidden state captures
information about the past words in the sequence and allows the RNN to understand the
context of the current word.

One of the key advantages of RNNs is their ability to handle variable-length input text
and maintain context across the entire sequence. This makes them well-suited for tasks
such as language modeling, understanding, and text generation, where the input text can
vary greatly in length, and context is important to understand the meaning of the text.
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Additionally, their ability to handle sequential data and maintain the order of the words
is also important to understanding the meaning of the text.

There are different types of RNNs that have been used in NLP such as the standard
RNN, Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) (Cho et al.,
2014), which are designed to overcome the vanishing and exploding gradients problem of
the standard RNNs.

3.5.1 LSTM

Figure 3.3: Diagram of an LSTM cell structure (Olah, 2015)

Long Short-Term Memory (LSTM) is a type of Recurrent neural network (RNN) used in
deep learning, which was designed to address the vanishing gradients problem that occurs
in traditional RNNs (Hochreiter and Schmidhuber, 1997). This problem occurs when the
network tries to propagate gradients over a long sequence, causing the gradients to become
very small and disappear. LSTM solves this problem by using a memory cell that can store
information over a long period of time and gates that control the flow of information into
and out of the memory cell.

LSTMs are widely used in various tasks (Ravuri and Stolcke, 2015; Huang et al., 2015;
Kurata et al., 2016; Hakkani-Tür et al., 2016). They can handle input sequences of varying
lengths and learn to recognize patterns and dependencies in sequential data. They have
also been used in dialogue systems, where the LSTM network is used to encode the user’s
inputs, generate context-aware responses, or perform a classification.

Their sequential nature, however, does not allow a proper parallelization during the
training and inference time in multi-GPU environments. Besides other improvements, this
shortcoming is addressed in the recent transformer architecture.
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3.6 Transformers

Transformers are a very popular type of neural network architecture that was introduced
in the paper “Attention is All You Need” by Vaswani et al. (2017). They have been widely
adopted in NLP tasks due to their ability to handle long-range dependencies and process
sequential data efficiently.

Figure 3.4: The transformer block schema (Zhang et al., 2023)

Transformers are based on the concept of self-attention, which allows the model to weigh
different parts of the input sequence differently when making predictions. This allows the
model to focus on the most relevant parts of the input for a given task.

An original transformer model is composed of an encoder and a decoder, where the
encoder processes the input sequence, and the decoder generates the output sequence.
The encoder is composed of multiple layers, each containing a multi-head self-attention
mechanism and a feedforward neural network. The decoder is similar to the encoder but
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also includes a masked self-attention mechanism to prevent it from seeing future tokens in
the output sequence.

One of the key advantages of transformers in NLP is their ability to handle long-range
dependencies and process sequential data efficiently. Another advantage of transformers is
their ability to handle large amounts of data and can be easily parallelized across multiple
GPUs, which allows them to achieve state-of-the-art results on a wide range of NLP tasks.

Popular transformer models include BERT (Devlin et al., 2019), GPT-2 (Radford et al.,
2019), and GPT-3 (Brown et al., 2020), which have been applied to a wide range of NLP
tasks and have shown to be a powerful tool for understanding and generating text.

3.6.1 Generative Transformers

Generative transformers, as a subset of all transformer-based models, are models focused
on generating natural language text as their output. They are often considered zero-
shot learners because they can perform language tasks without any explicit supervision
or training data for the specific task at hand. The typical representatives are Generative
Pre-trained Transformers (GPTs) models.

Generative transformers are trained on large amounts of unlabeled text data. This
pre-training allows them to learn the patterns and structure of language, which can be fine-
tuned for specific NLU tasks, such as question answering, text classification, and sentiment
analysis.

In NLP tasks, generative transformers can be used to make predictions or generate
output without having seen any examples of the specific task during training Brown et al.
(2020). This is because they have learned a rich representation of the patterns and structure
of language through pre-training. As a result, they can be used in zero-shot learning
settings, where the task and its associated outputs are unknown during training.

3.6.2 GPT Models

Generative Pre-trained Transformer (GPT) models are a series of advanced NLP models
developed by OpenAI (Radford et al., 2018, 2019; Brown et al., 2020; OpenAI, 2022).
These models are built upon the transformer architecture using only the decoder part and
are designed to generate human-like text based on the context provided to them.

They use the unmodified transformer decoder blocks, including self-attention mech-
anisms, to capture long-range dependencies in sequential data efficiently. In the GPT
architecture, the model consists of a stack of multiple layers of transformer decoder blocks,
where each block includes a multi-head self-attention mechanism, followed by position-wise
feedforward networks. However, unlike the transformer used in tasks like machine trans-
lation, GPT is an autoregressive model, meaning it generates text sequentially, one token
at a time, from left to right.

During the pre-training phase, GPT models are trained on vast amounts of unlabeled
text data. During this phase, the model learns to predict the next word in a sentence,
capturing the structure and semantics of the language. After pre-training, the model can
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be fine-tuned on specific tasks or domains with labeled data to adapt its learned repre-
sentations for more targeted applications such as conversational systems. Additionally, as
introduced in ChatGPT-3.5 (OpenAI, 2022), reinforcement learning is used to fine-tune
the models using the rewarded responses.

GPT models have evolved throughout time, and they have changed, especially in the
number of parameters:

◦ GPT-1 (Radford et al., 2018) – The first iteration had 117 million parameters and
laid the foundation for subsequent models.

◦ GPT-2 (Radford et al., 2019) – Significantly larger with 1.5 billion parameters. It in-
troduced the ability for fine-tuning and demonstrated impressive language generation
capabilities.

◦ GPT-3 (Brown et al., 2020) – The largest and most powerful model in the series
with a staggering 175 billion parameters. GPT-3 showcased unprecedented language
understanding, zero-shot learning, and versatile application across various NLP tasks.

◦ ChatGPT-3.5 – It is assumed to have the same number of parameters as GPT-3. It
has introduced reinforcement learning fine-tuning. Thanks to the public availability,
it extremely popularized the whole GPT model family.

◦ GPT-4 – The most powerful GPT model. The number of parameters has not been
revealed. However, the community estimates it to be over 1 trillion.

GPT-3 introduced the concept of zero-shot learning, enabling the model to perform
certain tasks without explicit training for them. This capability demonstrates the general-
ization and adaptability of the model to diverse tasks. This contributes to the versatility of
the model usage in various NLP applications, including language translation, summariza-
tion, question-answering, text completion, and more. Its ability to generate coherent and
contextually relevant text has found applications in creative writing, content generation,
and conversational agents.

OpenAI has adopted a strategy of progressively increasing model sizes, leveraging larger
datasets, and refining training techniques to enhance the performance and capabilities of
each GPT iteration. In summary, GPT models represent a groundbreaking advancement
in the field of NLP, showcasing the effectiveness of pre-training on massive datasets and
transformer architecture.

3.6.3 Prompt-Based Learning

Prompt-based learning is a machine learning paradigm that involves training models to
perform specific tasks using structured prompts or instructions provided as input. In this
approach, instead of training models on large amounts of labeled data, models are trained
to generate outputs conditioned on predefined prompts or cues. The prompts serve as
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guidance for the model to produce desired outputs, enabling targeted learning for specific
tasks. The GPTs are typical representatives of such models.

Prompt-based learning is particularly effective for tasks where labeled data is scarce
or expensive to obtain. By providing explicit instructions or examples through prompts,
models can learn to generalize to new inputs and produce accurate outputs even with
limited training data. Additionally, prompt-based learning allows for fine-grained control
over model behavior and output, as the prompts can be tailored to emphasize certain
aspects or criteria of the task.

This approach has been successfully applied in various natural language processing
tasks, such as text classification, question answering, and language generation. For ex-
ample, in text classification, models can be trained to classify documents into predefined
categories based on prompts that specify the desired classification criteria or features of
interest. Similarly, in question answering, models can be trained to generate answers to
questions by providing prompts that guide the model to focus on relevant context or in-
formation.
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Chapter 4

Effective Hybrid Architecture of a
Conversational Socialbot

This chapter describes a novel approach to an open-domain conversational system with an
overall goal to conduct a coherent and engaging conversation with a user. The main non-
functional requirement is the resource efficiency of the system’s runtime. The system is not
oriented on a particular domain, and it should be able to respond to various user inputs
for an arbitrary topic. This type of conversational system has been called socialbots since
the first annual Alexa Prize Socialbot competition (Ram et al., 2017). The name socialbot
stands for a social chatbot as an illustration of the open-domain “social” conversation
between a user and the bot.

The novel approaches described in this chapter include the evolution of four versions
of the system called Alquist from the first four years of the Alexa Prize competition. Each
version of the system leverages strong parts of the previous ones and builds on top of it.
All the systems shared the main aspect of modular architecture instead of a monolithic
single model. The modular architecture allowed the usage of external information sources
as well as the rapid development of the conversational strategy and content.

The chapter is organized as follows. First, we describe the concept of socialbots as part
of the Alexa Prize competitions. Then, we describe the versions of the Alquist socialbot
with an emphasis on understanding natural language. We will evaluate the relevant indi-
vidual parts of the system on the corresponding datasets. Moreover, the overall system
performance will be human-evaluated using a large number of evaluators. Finally, we will
summarize the main contributions of the evolved system architecture.

4.1 Alexa Prize Socialbot Grand Challenge

The Alexa Prize (Ram et al., 2017) is an annual competition organized by Amazon to
encourage research in the field of conversational AI and to advance the development of
socialbots. The term socialbot, first introduced during the first year of the competition,
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became widely used for conversational systems that can conduct an engaging, coherent,
and human-like conversation with users on an arbitrary topic. Coherence and engagingness
are two critical points of the conversation. The recent models trained on a large amount of
data are capable of a coherent conversation without a low effort. The engagingness, on the
other hand, typically requires proper dialogue management and access to the up-to-date
information that needs to be incorporated into the conversation based on the context of
the conversation.

Despite the competitive character of the Alexa Prize and awards for the first three
places plus the Grand prize for the average time of the final conversations being higher
than 20 minutes, the main benefit of developing the system as part of the competition
is the huge number of users evaluating the system. The evaluation corresponds with the
competition assignment, i.e., the users evaluate the relevance, coherence, and engagingness
of the conversation by giving one to five stars at the end of the conversation.

The Alexa Prize Socialbot Grand Challenge is a multi-stage competition where a dif-
ferent group of users evaluate the competing bot during each stage. The socialbots are
tested in real-world interactions, first with a limited set of selected users, then with various
Amazon Echo users, and finally with a handful of trained judges.

The Alexa Prize has become a major event in the field of conversational AI, attract-
ing participants from around the world and inspiring new research and innovation in the
development of socialbots. The competition has contributed to the advancement of the
field and has helped to create more natural and engaging conversational experiences for
users. This thesis focuses on the first four years of the competition. First, we describe the
differences over the years, and then we focus on the evolution of the underlying Alquist
technology.

4.1.1 Alexa Prize Socialbot Grand Challenge 1

In late 2016, conversational AI started gaining popularity among technological companies
as the research had been pushing the capabilities further. However, the limitations were
still significant, especially in the field of context-aware or longer conversations. The first
Alexa Prize competition (Ram et al., 2017) aimed to address this challenge and advance
conversational AI, gaining the university research teams access to large-scale data and real-
world feedback, which is crucial to the effective development and evaluation of a socialbot.
Teams were also provided with live news feeds to enable their socialbots to stay current
with popular topics and news events that users might want to talk about.

4.1.2 Alexa Prize Socialbot Grand Challenge 2

The second year of the competition introduced several modifications to help the research
teams focus on the relevant research. The Alexa Prize team introduced a CoBot toolkit
(Khatri et al., 2018b,a), allowing both new teams as well as teams participating in the
previous year the seamless integration to the Amazon Skills Kit (ASK) infrastructure. Ad-
ditionally, the toolkit included several out-of-box models such as Topic and Dialog Act Clas-
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sifiers, Conversation Evaluators, and Sensitive Content Detector. As Automatic Speech
Recognition (ASR) is provided via the ASK infrastructure to the teams, the significant
improvement was the release of the new ASR model with a 25% relative improvement in
Word Error Rate (WER). Additionally, the Common Alexa Prize Chats (CAPC) dataset,
containing turns from the Alexa Prize conversations, which was introduced during the first
year of the competition, was now available from the beginning, allowing the teams to start
training their models based on the data gathered from multiple socialbots.

4.1.3 Alexa Prize Socialbot Grand Challenge 3

Besides the improved CoBot (v2), the direction of the third year of the Alexa Prize com-
petition (Gabriel et al., 2019) was driven by the rising popularity of the generative models
GPT (Radford et al., 2018) and GPT-2 (Radford et al., 2019). Amazon provided teams
with a model based first on GPT and then on GPT-2 and fine-tuned on the Topical chat
dataset created by Gopalakrishnan et al. (2019). The dataset itself was also available to
the teams. The model was called Neural Response Generator (NRG) and was available
in two versions, the first vanilla fine-tuned models and the second enhanced policy-driven
(PD). The response generation process of the PD model can be controlled using dialogue
acts, topics, and knowledge to create the most suitable response. Additional contributions
included enhanced Topic classification, the Dialogue Act classification models, and the
enhanced Topical chat with a simulated ASR error.

4.1.4 Alexa Prize Socialbot Grand Challenge 4

The focus on generative models was the primary topic in the fourth year of the Alexa Prize
competition as well (Hu et al., 2021). The improved NRG models were trained on the
conversation of the top 5 bots from the previous year. The controlled version of NRG was
focused on empathy and topical control. The new NLU models included both Hierarchical
Recurrent Neural Network (HCNN) (Gabriel et al., 2019) and BERT (Devlin et al., 2019)
models for topic classification, basic intent recognition, and named entity recognition. The
evaluation started to be more focused on A/B testing by including experiment traffic that
was not impacting teams’ ranking.

4.1.5 Other Alexa Grand Challenges

Besides the Alexa Prize Socialbot Grand Challenge, Amazon recently introduced two ad-
ditional conversational AI competitions, the Taskbot Grand Challenge and Simbot Grand
Challenge.

The Alexa Prize Taskbot Grand Challenge (Gottardi et al., 2022) encourages research
to advance the development of task-oriented dialogue systems. The competition’s goal
is to build a task-oriented dialogue system that assists humans with real-world Cooking
and Do-It-Yourself tasks. The created systems use a multimodal interface that combines
voice interaction with visual elements such as lists, text, and images on supported devices.
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The multimodal approach was then adopted by Alexa Prize Socialbot Grand Challenge 5,
allowing the teams to support the conversation about popular topics via relevant text and
images and create a visual identity for the socialbot.

The main criterion of the bot performance evaluation was user satisfaction rating,
which was equivalent to the rating in the Socialbot Grand Challenge. Additionally, the
completion metric was used that indicate whether a user was able to complete the task.

The Alexa Prize Simbot Grand Challenge (Shi et al., 2023) is aimed at building con-
versational robots that also need to interact with and complete tasks in a (simulated)
physical environment. The users interact with a bot via voice, making the bot navigate
the environment and manipulate objects.

The evaluation of the bots was inspired by the Taskbot Challenge, including the user
satisfaction rating and a mission success rate, which are equivalent to the completion
metric. The mission was defined as a set of tasks that the bot needed to accomplish in the
environment.

Taskbot and Simbot Challenge, along with the original Socialbot Challenge, have a goal
to push boundaries in conversational AI with different goals and in different environments.
All three competitions eventually concluded that users benefit from a multimodal interface
regardless of the use case. However, the multimodality opens additional research topics,
especially the ability to be aware of the other modalities.

4.2 Alquist: A Hybrid Socialbot

The core concept of the Alquist architecture, as we published in Pichl et al. (2017), is to
leverage a hybrid design. The hybrid system combining the end-to-end system and tree-
based approach allows the system to pursue the engagigness of the most popular topics,
leveraging the precise conversational design while allowing the system to respond to various
utterances from a wide range of topics. Moreover, the data sources containing the current
information about real-world entities can be easily integrated.

We designed a system that is split into smaller tree-based topic-specific dialogues, such
as sports, movies, or books. An entertaining dialogue needs to contain specific information
about the conversational topic. A tree-based approach and constrained dialogue allow
us to work with this information easily. On the other hand, we use the generative and
retrieval dialogue implementation once the dialogue diverges from the tree-based topics.
The information provided using this approach is not that rich, but the topic coverage is
significant.

The high-level system architecture adopts the modular system concepts described in
section 2.7. Automatic Speech Recognition (ASR) as an input and Text to Speech (TTS)
as an output (shown in Figure 2.1) are provided by the Alexa infrastructure, allowing us
to work directly with text input and output. The architecture is divided into two cate-
gories: Information Aggregation (offline) and Alquist Pipeline (online). The information
Aggregation part gathers information from various sources for later use. It is described in
section 4.2.1. Alquist Pipeline is the actual system’s core, which accepts the message from
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the user and generates a response. Alquist Pipeline and its components are described in
section 4.2.2.

The high-level information flow through the pipeline is as follows.

1. A user utterance along with the ASR hypotheses are processed by the analysis com-
ponents (section 4.2.2, left part of the Figure 4.1). In case of a low hypothesis score,
the bot may produce a response asking the user to repeat.

2. Dialogue management (middle part of the Figure 4.1) selects one of the following
modules: chit-chat, opinion, question answering, or one of the Structured Topic
Dialogues (STD) based on the information from the analysis part. The STDs are
preferred multi-turn units. If the previous STD is not finished, the DM prioritizes
the finishing of the dialogue.

3. In case an STD is triggered, a sub-dialogue manager relevant to the selected STD
comes into play. Unless the STD is interrupted by the global DM, the sub-DM selects
the most suitable flow within the dialogue.

4. Once the specific module is selected and produces the answer, the answer is nor-
malized by a set of rules and checked for profanities (important for generative and
retrieval approaches). Finally, it is passed to the TTS service (external).

Figure 4.1: The architecture schema of the Alquist: A Hybrid Socialbot

4.2.1 Information Aggregation

One of the important aspects of an engaging conversation is to have access to up-to-date
information. For example, referencing the performance of an actor in a movie or discussing
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the sports match result could be used in respective topics. For that reason, we implemented
two main information sources. We take advantage of several types of information sources
based on the type of information stored:

◦ Knowledge Bases include the facts that do not change over time, or their values
change only occasionally. We obtain this type of information from a Freebase RDF
database (Bollacker et al., 2008b).

We also use the Microsoft Concept graph (Roach, 2016) to recognize concepts be-
longing to the individual entities in the user’s message. We expanded the Concept
graph data with additional entries containing movies and games. These entries were
obtained from The Movie Database and Internet Game Database, respectively.

Additionally, we use The Movie Database, Internet Game Database, Goodreads, and
Last FM APIs to obtain other movie, game, book, and music-related information
respectively1.

◦ Regularly updated information usually depends on the current events or other
time-related aspects. As we want to deliver up-to-date content, we regularly save
data from several services. We download daily news articles from The Washington
Post and headlines from Today I Learned2 subreddit, which we present as fun facts
in conversations.

The information aggregation pipeline is not part of the runtime component pipeline and
runs separately therefore, it is not included in the Component Pipeline section. However,
the results of the Information Aggregation are persisted and used by individual pipeline
components.

4.2.2 Component Pipeline

The pipeline consists of several interconnected components. It was designed to be highly
modular, allowing us to swap individual components and test different approaches quickly.

The core Alquist pipeline was inspired by Apache UIMA (Ferrucci and Lally, 2004).
We adopted several design concepts, such as central annotation storage (context), where
every component stores its results. We describe the context in detail later in this section.

There are two main types of components in the pipeline: analysis components and
response-producing components. The purpose of the analysis components is to extract
intent and entities from the user’s input. The response-producing components are either
generative or retrieval-based neural networks and finite state automata.

The response-producing components are grouped into modules according to the types of
responses they produce. We currently employ the following modules: Chit-chat, Question
Answering, Structured Topic Dialogues, and Opinion. These modules are selected by the
top-level DM based on information extracted during message analysis.

1The URLs of the services: www.themoviedb.org, www.igdb.com, www.goodreads.com, www.last.fm
2https://www.reddit.com/r/todayilearned/
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Context

The context contains all the information relevant to the current session. All modules of the
pipeline are storing and accessing information in the context. It holds the ASR hypotheses,
NLP annotations, recognized entities, and eventually the final response. The information
that needs to be stored for whole sessions or all following sessions can be marked as a
session context or long-term context, respectively. It can be used, for example, for storing
a user’s name or user’s favorite topics. The information about a topic and the last state
of ongoing Structured Topic Dialogue is also stored in the context. Additionally, for each
topic, the last state and discussed entity are stored in the session context.

The context is regularly (after each response) stored in a persistent Dynamo Database.
This allows the bot to retrieve the context even if the session was interrupted and to
continue with the dialogue.

NLP Analysis

The NLP analysis part of the pipeline uses its components to extract the necessary infor-
mation from the user’s utterance. This information is then used by the dialogue manager
and the following parts of the pipeline to produce a response. The analysis components
can be generic or topic-specific. Generic analysis components are used for all user’s mes-
sages. These components tokenize the input, annotate with part-of-speech (POS) tags,
and detect entities from the message. Topic-specific analysis components are used only in
certain states of Structured Topic Dialogues. An example of such a topic-specific analysis
component is specialized entity recognition of book or movie titles.

General analysis components Stanford CoreNLP (Manning et al., 2014) was selected
for standard natural language processing (NLP) tasks. The tool provides several anno-
tators. Currently, we use annotators for sentence splitting, tokenization, part-of-speech
tagging, dependency parsing, lemmatization, sentiment analysis, and named entity recog-
nition (NER). Additionally, we take advantage of TrueCase annotation, which reconstructs
the letter case that was lost by ASR. This is helpful for NER, which has a model trained
on sentences with original case.

The entity recognition is implemented using two approaches. The first one is Microsoft
Concept Graph (Cheng et al., 2015; Wu et al., 2012), which provides a list of possible
concepts for a given entity (for example “Frozen” has the following concepts: film, feature,
processed food, . . . ). We have a snapshot of the Concept graph3 stored in the Elasticsearch
instance. This allows us to query for a specific entity name and retrieve a concept quickly.
The second tool is based on Label-lookup4 which is used in question answering system
YodaQA (Baudǐs, 2015). Label-lookup uses the cross-wikis (Spitkovsky and Chang, 2012)
dataset to match strings together with the nearest Wikipedia concept. Our version of the
tool has two modifications. First, we include the Freebase ID in the database and thus

3Snapshot was downloaded in March 2017.
4https://github.com/brmson/label-lookup
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eliminate a SPARQL query to DBpedia Lehmann et al. (2015) to retrieve it. Secondly, we
deleted all cross-wiki labels with the Levenshtein distance greater than 3 from the canonical
label.

Topic-specific Analysis Components The group of topic-specific analysis components
consists of the recognizers that are suitable for a specific Structured Topic Dialogue. Each
topic has a fixed list of patterns. If the pattern is found in the message, it is stored in
the context. They are used, for example, for recognition of sports teams, subjects of news
articles, or movie genres.

We also extract a focus phrase from the user’s message as candidate words for entity
recognition. This procedure is achieved by a combination of several approaches. The first
approach selects all words from the input sentence that are marked as a named entity (NE)
by the CoreNLP tool. The second approach selects every sequence of consecutive words
marked as a noun phrase (NNP) by the POS tagger as a focus phrase, too. Additionally,
a heuristic method based on the dependency parser output selects the lowest noun mod-
ification (nmod) of the sentence root and its corresponding adjective modification (amod).
We also trained Conditional Random Fields (CRF) sequence labeling using data that were
generated using described heuristics and manually corrected. The results of all approaches
are combined, and the duplicates are removed.

ASR Confidence and Profanity Filtering We compute a speech recognition confi-
dence as follows. We take all ASR hypotheses (up to 5 hypotheses are obtained from the
Conversational ASR model provided by ASK) and their corresponding scores and eliminate
some of them based on the following procedure.

Algorithm 4.1 Filter Sentences by Token ASR Scores

1: function FilterSentences(sentenceList)
2: tokenProbabilities← GetTokenScores(sentenceList)
3: averageProbability ← ComputeAverageScores(tokenProbabilities)
4: for each sentence in sentenceList do
5: if averageScore(sentence) < threshold then
6: Remove sentence from sentenceList
7: end if
8: end for
9: if no sentences remain in sentenceList then
10: Ask user to repeat the message
11: end if
12: return sentenceList
13: end function

The profanity filtering is done simply by searching for banned words from a list. If a
word from the list is found in a user’s message, the bot refuses to talk about that topic.
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Dialogue manager

Dialogue management is divided into two levels.

1. Top-level DM decides which module should be executed (chit-chat, question an-
swering, Structured Topic Dialogue, etc.) and additionally which topic should be
executed in Structured Topic Dialogue (sports, movies, etc.). We experimented with
several approaches (as described in section 4.2.3). In addition to a predicted topic,
we implemented a feature that allows the bot to select a topic according to a men-
tioned entity. Whenever the Structured Topic Dialogue module is recognized, the
bot checks if there is an entity matched to some entry in MS Concept Graph. If
there is such an entity, the bot compares its concept to a predefined list of concepts
corresponding to each topic. For each topic, the bot sums up the popularity of the
entity given each concept from a list. We select a topic with the highest accumulated
popularity count.

2. Topic-level DM is used in individual Structured Topic Dialogue. It uses an intent
recognition-based approach with a mapping of each intent to a particular action.
The actions are, for example, selecting a response, saving information into context,
or accessing the API. If no action is selected, the system responds with a response
generated by the generative network.

The system controls the dialogue flow using a state graph. However, we allow the user
to take the initiative. We detect an additional set of intents specific to a given dialogue, and
if one of these intents is detected, the system switches to a defined state. This approach
allows us to handle a turn-taking conversation with an initiative on both sides. Intent
specific to dialogue is detected by embedding a similarity-based method.

Response Generation

Structured Topic Dialogues cover the main interaction with the user. They are de-
signed to cover the most frequent topics and to provide more in-depth interaction and en-
gaging conversation to the user. The system additionally contains generic dialogue about
entities from Freebase and dialogues providing easier and more fluent interaction with the
bot (help dialogue, initial dialogue, exit dialogue, recommendation dialogue). Since our
system contains multiple dialogues, it has to decide which one should be executed. This
decision is made by the topic-level DM.

Generative Neural Networks are used for a chit-chat dialogue. Chit-chat does not
necessarily require knowledge about a set of entities. This is, for example conversation
about the user’s (bot’s) mood, a question about the day, etc. It is triggered when the
chit-chat module is recognized or if no other module generates a response.

We use sequence-to-sequence (Sutskever et al., 2014) network architecture to generate
the responses. This framework is commonly used for machine translation but was recently
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proposed as a conversational model as well (Vinyals and Le, 2015). Both the encoder
and decoder are based on the LSTM blocks. The parameters were empirically selected as
follows. We set the size of both encoding and decoding vocabulary to 50,000, the number
of LSTM cells is 1024 in each layer, and the number of layers to 3. Additionally, we
set the batch size to 64 and the learning rate to 0.8. As a training data, we used the
discussions from Reddit5. We removed messages with special characters and those longer
than 20 words from the dataset. The preprocessing step resulted in the dataset of 3,735,209
message-response pairs, and we created a training split consisting of 3M samples. The rest
of the samples were used as validation data.

Question answering module is used whenever the user asks a factoid question. These
questions are recognized by the module recognizer. The actual process of generating an-
swers is delegated to three systems: YodaQA (Baudǐs, 2015; Pichl, 2016), Evi (provided
for the competing teams), and a system for answering questions about a news article.

4.2.3 Experiments

With the thesis focus on the NLU part, we report the results of two main experiments.
The first one is intent recognition accuracy since it is the most critical NLU component of
the system that directly impacts the decision logic in Top-level DM. The second one is the
average rating and conversation duration of the individual topics, as these two values are
the main criteria of socialbot evaluation.

Intent Recognition

The goal of the intent recognition part of the system is to both maximize the accuracy and
minimize the training and inference time.

Results are shown in the table 4.1. Tested methods of intent detection are:

◦ TF-IDF: We use the TF-IDF implementation from the scikit-learn library (Pe-
dregosa et al., 2011). We found the hyper-parameters of TF-IDF by grid search.
They are following, analyzer: word, ngram range: (1,2), max df: 0.9, min df: 0.0,
norm: l1, smooth idf: False, sublinear tf: True. The rest of the parameters have
default values.

◦ Embeddings: We use pre-trained GloVe (Pennington et al., 2014) vectors. We
convert training examples to vector representation by calculating the average of em-
beddings of the example’s words. We normalize vector representations of training
examples to unit length. We do the same for the user’s input. We calculate the
cosine similarity of the user’s input to each training example and use the label of
the most similar training example as the recognized intent. We achieved the best
accuracy with the 300-dimensional variant of vectors.

5https://www.reddit.com/r/datasets/comments/3bxlg7/i have every publicly available reddit comment/
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◦ Logistic regression: We use the scikit-learn implementation with default param-
eters and balanced classes. The input is the vector of word uni- and -bi grams
concatenated with the vector of POS uni- and bi-grams.

◦ Neural network: We use GloVe embeddings of dimension N = 300 for input words
(both message and focus) and a multi-channel convolution (Kim, 2014) with channels
of size 1 to 5 for message input and 1 to 3 for focus phrase input. The number of
convolutions is set to N/2, the activation function is tanh, and max-pooling is over
the whole sentence. Since the convolutions of message and focus input are separate
layers, the resulting vectors are then concatenated. Additionally, the label predicted
for the previous message is concatenated to the vector as well. The concatenated
output is then fed into a dense layer with an output dimension equal to 300, followed
by dropout with a rate of 0.5, and finally with a softmax-activated dense layer with
an output dimension equal to a number of classes.

Table 4.1: Accuracy of intent detection

Text representation Classifier Accuracy

TF-IDF Cosine similarity 88.3
Glove Cosine similarity 89.7
Word+POS Ngrams Logistic regression 92.6
Glove CNN 92.7

Average Rating and Conversation Duration

We selected the average user’s rating and average time spent as a quality metric for our
Structured Topic Dialogues. The average rating is calculated as follows. We collect user’s
ratings (one to five stars) of the whole conversation. The rating of the conversation is
assigned to all Structured Topic Dialogues that were used in the conversation. We calculate
the average of assigned ratings. Time spent in the dialogue and the number of dialogue
turns are measured from the start of Structured Topic Dialogue until a different module
is recognized by the DM. The average ratings, times, and dialogue turns are presented in
the table 4.2.

4.2.4 Conclusion and Next Steps

As the first-in-the-row of the proposed conversational systems, this version of the Alquist
socialbot forms a strong baseline for the following versions to be compared with. The
proposed hybrid architecture proved to be an effective approach for the rapid development
of the social bot. The proposed system implemented as part of the Alexa Prize Socialbot
Grand Challenge Competition was awarded as the second-best socialbot. The detailed
results are shown in section 4.6. We evaluated the most important part of the NLU
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Table 4.2: Average rating, time, and number of dialogue turns of Structured Topic Dia-
logues

S. T. dialogue Rating Time Turns S. T. dialogue Rating Time Turns

Books 3.774 83 s 6.151 Jokes 3.931 50 s 4.131
Fun facts 3.972 64 s 3.823 Movies 3.669 69 s 6.199
Games 3.828 93 s 6.979 Music 3.823 35 s 2.947
General chat 3.616 40 s 2.509 News 3.763 102 s 5.655
Gossip 3.761 66 s 4.315 Recommendation 3.575 15 s 1.403
Help 3.509 24 s 1.025 Repeat 2.429 14 s 2.392
Holidays 3.740 26 s 2.495 Sports 3.767 50 s 4.007
Initial chat 3.437 44 s 3.959 Stop 3.682 44 s 2.745

pipeline—intent recognition—and showed the competitiveness of the algorithms that do
not demand a lot of computational power. The other parts of the NLU pipeline are subject
to the research of the following versions of the system and will be described in the following
sections.

4.3 Alquist: Towards Sub-Dialogue Models

The previous version of the system was built using a hybrid approach. The structured part
of the hybrid system was divided into individual topics, each represented by a designed
dialogue structure. As a next step, we propose a sub-dialogue structure, described in
Pichl et al. (2018) and in this section, addressing several major issues of the previous
approach. First, the monolithic dialogue structures caused repetitiveness due to limited
flow variability, while sub-dialogue structures allow a unique experience in every session.
Second, the maintenance of the large structure is demanding with the increasing size of
the dialogue. The last important aspect is the reusability of the individual parts of the
sub-dialogue structure.

The dialogue structure changes come along with the changes in NLU components.
Intent recognition, even though it is still being divided into top-level and sub-dialogue
level classification, is significantly improved on the sub-dialogue level side. Additional
classifications, such as sentiment detection, dialogue act detection, entity recognition, entity
sentiment detection, and topic switch detection, are introduced and discussed later in this
section.

4.3.1 Architecture

The system consists of multiple components, which are visualized in Figure 4.2. The ar-
chitecture focuses on effective information persistence with an emphasis on low-latency
access. Moreover, the components orchestrated by the Core are developed with effective-
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ness in mind while keeping state-of-the-art results. Each component is described in detail
in Section 4.3.3.

Alquist Core

Hybrid Code
Networks

Topic Switch
Detector

NLU

Entity
Recognition

Dialogue Acts
Detection

Entity
Sentiment

Intent
Detection

Lambda

DynamoDB
Elasticseach

cluster

Custom Knowledge
Base 

Amazon Neptune

Context

Concept Graph 
Washington Post 

Reddit 

Figure 4.2: Alquist 2.0 architecture schema

The core component serves as an integration layer managing various NLU and other
modules distributed across services. The NLU module encapsulates multiple understanding-
related models. A hybrid code network is a module on the border of NLU and DM dedicated
to each sub-dialogue. Topic switch detector allows seamless transition among individual
topics. All of these four modules are standalone containers.

All the information (context) gathered during each dialogue turn is persistently saved
in the database. The information includes all of the annotations, messages, generated
responses, current topics, current states, etc. Crawled data that are required to be queried
using full-text queries are stored in the Elasticsearch database. The crawling sources
include Washington Post articles and Reddit content. Additionally, we have a snapshot
of Microsoft Concept Graph (Cheng et al., 2015), which is used to determine a type of a
given entity.

That last component is an RDF knowledge graph. It contains the last dump of Freebase
(Bollacker et al., 2008a) enriched by our custom data.

4.3.2 Information flow

The following list describes the high-level processing logic and the flow of the user utterance
through the individual system components.

53



4. Effective Hybrid Architecture of a Conversational Socialbot

1. The request from a client in a given format is passed to the Alquist Core.

2. The Alquist Core receives the request and based on the session ID, it loads the
context (up to 20 previous turns) from the database. If there is no previous turn (the
user just started the conversation), a welcome dialogue is triggered with an empty
context history.

3. The user message is annotated by all of the models in the NLU module plus the
Topic Switch Detector is triggered.

4. If there is a Topic Switch detected, a new sub-dialogue is selected based on the
assigned topic nodes, which are assigned to the current entity and intent combination.

5. If there is not the Topic Switch detected, the bot continues with the previous
sub-dialogue, or it suggests a new one when the previous one is over.

6. The user message is sent to Dialogue manager, which produces a response accord-
ing to the selected sub-dialogue.

7. Before the pipeline is finished, the bot stores the context in the database.

4.3.3 System components

Knowledge base

To obtain content for the dialogues, we scrape data from various sources. Two examples
of those are the Washington Post and Reddit. Reddit posts from the subreddit “Today I
learned” are used as trivia about people and other entities. We designed our knowledge base
in order to add structure to this data. We chose the RDF-triples format to expand it with
information already converted to it, namely a dump of Freebase. Data integration between
Freebase and our data (articles from now on) is done as follows: First, each article is
searched for named entities. Articles from certain sources already contain this information,
but the rest need to be processed with a named entity recognition tool. Once the entities
are obtained, they are linked to their Freebase IDs using a query to our implementation
of a Freebase fuzzy label lookup6. Finally, the articles and Freebase entities are linked
using a simple ontology of our own design. The knowledge is periodically updated with
new articles, and it can be queried with SPARQL query language. One improvement over
Elasticsearch, where we stored the data initially, is the fact that when we look for an article
about an entity, we can be sure that it is mentioned there.

Entity recognition

Entity recognition is a task that gives a label for every single word from a given utterance.
We use a standard inside, outside, begin (IOB) (Ramshaw and Marcus, 1999) schema

6https://github.com/brmson/label-lookup
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commonly used in Named Entity Recognition (NER) task with the addition of a type of
entity (e.g. B-movie). The only difference to the traditional NER task is that we do not
require the entity to be a strictly named entity that can be mapped, e.g., to a Wikipedia
article. For example, in the sentence I want to talk to you about my life, the word sequence
“my life” is marked as an entity. This approach allows the bot to start a dialogue about
abstract topics such as “my life”. Additionally, we want to recognize a correct entity
type from the utterances where it is possible. This type-inference is based on the current
utterance thus, it should be possible for the model to recognize it. For example, in the
sentence: I want to talk about Matrix, our model should label “Matrix” as a Generic Entity
since it is not possible to know that Matrix is a movie without external knowledge. On
the other hand, in the sentence Let’s chat about Matrix movie, it should label “Matrix” as
a movie.

For the sequence tagging task, we use the BI-LSTM-CRF (Huang et al., 2015) model.
The input is a user utterance where each word is represented by word embedding. The
embeddings are followed by a bidirectional LSTM layer, which is then connected to a fully
connected layer. The sentence features extracted by the previous layers are then fed into
the CRF layer. The number of predicted classes is two times the number of types (one for
B and one for I) plus one (for O). As training data, we use a manually labeled dataset of
utterances gathered during conversations with real users. We use our own annotation tool
to make the process as fast as possible.

Intent detection

Intent detection classifies each utterance into one of the predefined top-level classes. These
classes are related to the sub-dialogues that the bot is capable of talking about. The classes
are, for example: “tell topic”, “change name”, “tell news”, etc. Detected intent combined
with recognized entities is used in deciding which sub-dialogue should be triggered. There
is not a strict boundary between entity and intent during the dialogue design. For example,
the sentence Let’s talk about rock music can be labeled with tell topic intent and rock music
entity or the intent can be tell about music and entity can be rock. Those two approaches
are equal as long as we stay consistent. Note that a new sub-dialogue is triggered based
on the entity and intent only if the topic switch is detected (based on the contextual data)
as described in subsection 4.3.3.

We use multi-channel convolutional neural network (Kim, 2014) as a model for intent
detection. The words from input utterances are represented as word embeddings. Em-
beddings are followed by five channels of convolutions, followed by a max pooling layer.
The last two layers are fully connected layers. The output of the model is the probability
of each intent class. The model is trained on a dataset, which is a combination of the
utterances from real conversations and utterances generated from templates.

55



4. Effective Hybrid Architecture of a Conversational Socialbot

Dialogue Act Detection

Dialogue act detection is also the utterance classification task. Unlike intent detection, the
dialogue act classes are not related to the specific dialogues, but they can be used across
various NLP tasks. The classes describe whether the utterance is a statement, question,
acknowledgment, etc. We use the commonly used Switchboard dataset (Godfrey et al.,
1992), which is a phone call transcription annotated by dialogue acts. The original dataset
contains over 200 classes, which are clustered into 43 classes based on the predefined rules7.
We trained our model using these 43 classes.

We use the same model architecture as for the intent detection. We do not use predicted
dialogue acts directly during the conversations, but we rather use a feature vector, which
is an output of the second-to-last fully connected layer. This feature vector is input to the
dialogue manager as described in section 4.3.3. However, as reported by Pichl (2018), there
is an improvement in dialogue act detection accuracy when the contextual information is
incorporated.

Entity sentiment

The entity sentiment is an important task for forming the bot’s personality and opinion
base. For each detected entity, we search X social network (formerly Twitter) via Twitter-
API for recent tweets containing the mentioned entity. We perform sentiment analysis on
gathered tweets and compute a mean value from received results. We use this value as a
basis for the socialbot’s initial opinion of the given entity.

For sentiment detection, we first clean the tweet of non-word strings and tokenize it,
then convert the individual tokens to their embedding representation. We use them as
an input to a bidirectional recurrent (LSTM) neural network layer. Our model utilizes a
dense layer from which we obtain estimated sentiment. The model then determines the
sentiment of the tweet on a scale from 0 (negative) to 1 (positive). We have trained our
model on two separate datasets: the IMDB sentiment dataset (Maas et al., 2011) and the
Twitter sentiment classification dataset (Go et al., 2009).

Topic graph

The topic graph presented in this section reflects the goal of the system, which is to have a
conversation about popular topics such as movies, books, sports, etc. However, arbitrary
topic node structures can be implemented.

The Topic graph contains the graph structure of topics, sub-dialogues, and their inter-
connections. We show the structure of topics in our Topic graph in Figure 4.3. It consists
of topic nodes and sub-dialogues. Each topic node has assigned one or more sub-dialogues.
For example, “Movies” topic node has assigned sub-dialogues about movies in general, like
“Where do you watch movies”, “What is your the most favorite movie” or “Are you a big
movie fan”. The Movie topic node has assigned sub-dialogues about some specific movie

7https://web.stanford.edu/~jurafsky/ws97/manual.august1.html
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Figure 4.3: Schema of Topic graph. Yellow nodes contain dialogues about a topic. Green
nodes contain dialogues about an entity of its type. The orange node GenericEntity con-
tains dialogues about entities of unknown types. Red nodes are special topic nodes con-
taining dialogues about the bot, user, and Initial chat. These nodes are not connected to
the rest of the Topic graph.

like “Actor starring in the movie”, “Director of the movie” or “What is your favorite part
of the movie”. Each of these sub-dialogues is implemented as a model in Hybrid code
networks.

Topic nodes are connected by oriented edges, which point from more specific to less
specific topic nodes. There is, e.g., an edge from Movie to Movies, or from Director to
Movies and Person. If we detect that the user wants to talk about Steven Spielberg, and
we know that he is a director, we can select any sub-dialogue from the Director node and
all nodes that we can reach from the Director node (Person, Movies). Although we prefer
the sub-dialogues of the Director node or the sub-dialogues close to it. If the selected sub-
dialogue ends, the topic graph automatically selects a new sub-dialogue from the Director
node or close to it. This method of active selection of new sub-dialogues keeps the user
engaged. We have a special node we call “GenericEntity” for all entities of unknown type.
It is the least specific topic node. It means that there is no edge from the GenericEntity
node to any other node. It contains three sub-dialogues: “Funfact”, “Shower-thought” and
“News”. These sub-dialogues do not require any specific knowledge about the entity. They
select the content of sub-dialogues by a text search of the entity name. This method allows
us to maintain a conversation about any existing entity.

There is also a Recommendation topic node. Its purpose is to suggest new topics of
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conversation to the users. This node is used only if users themselves do not specify the
topic of the conversation or we run out of sub-dialogues for the topic that they requested.

Topic-Level Intent Recognition

Figure 4.4: Schema of our implementation of Hybrid code networks

We use modified Hybrid code networks (HCN) described in Williams et al. (2017) as a
topic-level intent recognition model that is tightly connected to the dialogue manager. HCN
combines an RNN with domain-specific knowledge encoded as software and system action
templates. The task of the model is to select the best response based on the input message
and the context of the dialogue. HCN requires fewer training examples compared to other
end-to-end approaches thanks to domain-specific code but also retains the benefits of end-
to-end learning. The model obtained state-of-the-art performance on the bAbI Dialogue
tasks (Bordes et al., 2016). These three properties (ranking of handmade responses, low
data requirements, and end-to-end learning) are the main reasons why we decided to use
HCN as our topic-level intent recognition model.

Our modified implementation of Hybrid Code Networks consists of the following compo-
nents: input convolutional neural networks, recurrent neural network, and domain-specific
code implementing text actions, functions, action masks, and can start methods.

The model obtains the input message, which can be represented in the following three
ways. The first way uses an input convolutional neural network described in (Kim, 2014)
with pre-trained fastText embeddings (Bojanowski et al., 2017). We obtain the output from
the second last layer of CNN. The CNN is trained on the training data of the sub-dialogue.
The second way uses the architecture of (Kim, 2014) too, but the weights are pre-trained
on the sentiment analysis task. The pre-trained weights are frozen during training on the
sub-dialogue. We again obtain the input message from the second last layer of the CNN.
The last way uses the pre-trained model for dialogue act detection, from which we extract
the output of the second last layer. The weights of the model are frozen during training.
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These three input representations are concatenated into a single vector. Furthermore,
we concatenate the response class predicted in the previous step. The resulting vector
is fed into RNN. The timesteps of the RNN are constructed as follows: Instead of going
across the values of the single input vector, the timesteps go across the input messages.
This allows the model to learn the representation of the dialogue’s context. Our RNN layer
consists of LSTM (Hochreiter and Schmidhuber, 1997) cells.

The vector output of RNN is element-wise multiplied by the action mask vector. The
action mask vector consists of zeros and ones. Its purpose is to prohibit some actions by
assigning them a zero probability. The action mask vector is produced by the action mask
code. It consists of a set of rules. They prohibit the usage of responses that don’t directly
follow the last used response in the dialogue. The element-wise multiplied vector is fed to
the softmax layer that computes probabilities of responses. We select the response with
the highest probability.

There are two types of responses: text responses and functions. Text responses are
directly returned as the response. No additional processing is required. The functions are
represented as some code that needs to be executed. The result of the code must be the
class of the following response, which is the text response or next function. Meanwhile,
the function code can arbitrarily modify values saved in the context.

The text response may contain text actions. Such response can be “Movie was directed
by {say director}”, where the text action is {say director}. The text actions are replaced
by text actions code before they are presented to the user. The text action code can also
modify values saved in the context.

The last part of our HCN implementation is can start code. It is responsible for
determining whether the dialogue can be started based on the values saved in the context.
If the dialogue requires the director’s name, but it is unknown, for example, the can start
code flags the dialogue as not able to start. Another reason for this flag can be that the
sub-dialogue has been executed previously, and we do not want to repeat it. The topic
graph has to select different dialogue to execute if such a case happens.

Topic Switch detector

Figure 4.5: Schema of Topic Switch detector
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Topic Switch detector is a component that determines whether the user wants to switch
the topic of the conversation. If such a request is recognized, we switch the topic of the
conversation according to the detected intent and recognized entity. We use this model
on top of the intent detection because a decision to switch the topic must be conditioned
on the context of the conversation. Intent detection works only with the most recent
message, which is not sufficient because message “I like pop music.” can have different
topic switch labels in different contexts. If socialbot asks user “What do you like?”, we
want to switch the topic to sub-dialogues about music. However, if we are in the middle of
the dialogue about favorite music genre and the socialbot asks user “Which music genre
is your favorite?”, we do not want to switch the topic because it leads to a restart of the
conversation about music. But the intent detector returns intent “Music” for message “I
like pop music.” in both contexts. This is the reason why we use a Topic Switch detector
that is trained to make decisions not only on a recent message but also on the context of
the conversation.

The Topic Switch Detector model uses an architecture similar to the HCN model. It
consists of two input CNNs Kim (2014) and an RNN. The model’s inputs are the last
dialogue turn’s response and the current user’s message. The input CNNs create vector
representations of both inputs that are concatenated and passed to the LSTM and the
softmax layer. Two output classes of the softmax layer correspond to the probability of
the user wanting to switch the topic and not wanting to switch the topic of dialogue.

The topic switch is trained on sub-dialogues from the Topic graph. We generate arti-
ficial conversations from training data for individual dialogues, in which we mix training
examples of intent detection. We mark the turns into which we mix the intent example by
class one, which indicates the topic switch, and the rest of the turns by class zero. The
model learns to predict these labels.

4.3.4 Experiments

Top-level Intent and Entity Recognition

We have experimented with several models for the top-level intent and entity recognition
tasks. We trained separate models for each task and compared them with the combined
model that has outputs for both intent and entity. We had 8,052 samples for intent
detection and 3,494 samples for entity recognition. We are continuously annotating new
samples during the bot development. Most of the samples are gathered from dialogue
logs. At the beginning of the development, a small portion of samples was generated from
templates.

The models for entity and intent are described in section 4.3.3 and section 4.3.3, re-
spectively. The combined model is a modification of the entity model. It has two stacked
BI-LSTM layers. The last state of the first layer is the intent output and the sequence
output of the second layer is fed into a dense layer that is followed by CRF.

We tried three different embeddings for each task, and each test was triggered ten times.
We used GloVe (Pennington et al., 2014) with 50 and 300 dimensions and custom fastText
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embeddings with 100 dimensions. The results are shown in Table 4.3.

Table 4.3: Testing results of intent, entity, and combined models. There are three models
for each task that share the same architecture, but they use different embeddings. The
accuracy and sentence error rate fields contain mean value and standard deviation across 10
measurements. The results for the combined task contain values for the intent task/values
for the entity task. The sentence error rate is the metric applied only for entity recognition
and shows how many of the sentences have at least one misclassified token.

Model Accuracy Sentence error rate Training time

Intent
GloVe50 91.6%± 0.9 - 37 sec
GloVe300 94.8% ± 0.4 - 2 min 10 sec
FastText 94.7%± 0.4 - 47 sec

Entity
GloVe50 98.6%± 0.1 17.0%± 1.7 1 min 14 sec
GloVe300 98.7%± 0.2 17.6%± 1.7 1 min 53 sec
FastText 98.8% ± 0.2 14.9% ± 1.8 1 min 18 sec

Combined
GloVe50 93.0%± 0.5 / 98.2%± 0.2 - / 21.1%± 2.1 3 min 28 sec
GloVe300 95.0% ± 0.4 / 98.3%± 0.2 - / 21.3%± 2.5 5 min 7 sec
FastText 93.5%± 0.4 / 98.9% ± 0.2 - / 14.2% ± 2.4 3 min 42 sec

It is not a big surprise that the models with smaller embeddings are trained faster.
On the other hand, there is no such difference in training duration between GloVe300 and
fastText. GloVe300 vectors are slightly better for intent detection, whereas Fasttext seems
to be better for entity recognition.

Topic-Level Intent Recognition

We evaluate three architectures of topic-level intent recognition that are inspired by hy-
brid code networks. Moreover, we compared the impact of using word2vec and fastText
embeddings for each architecture. We evaluate the turn accuracy and dialogue accuracy
of the models on bAbI Task 6 dataset and our in-house Alquist conversational dataset.

Architecture Evaluation The first tested architecture is the same as an architecture
of HCN (Marek, 2018). It uses an average of word embeddings, bag-of-words vectors, and
additional features as inputs. We concatenate these features and pass them to the LSTM
layer. We do the element-wise multiplication of the output of the LSTM layer with the
vector of the action mask. We pass this result to the softmax function and select the
response with the highest probability. The second architecture uses the LSTM input layer
instead of the average of word embeddings and bag-of-words vectors. The third architecture
uses a convolutional input layer inspired by (Kim, 2014).

Datasets The Dialog bAbI Task Data (Weston et al., 2015) is a dataset of conversations
from the restaurant reservation domain. It is used to test end-to-end dialog systems in
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a way that favors reproducibility and comparisons and is lightweight and easy to use.
The dataset is divided into six tasks with increasing difficulty. We use task six because
it is the only task that contains records of real-world conversations between humans and
chatbots. It contains noisy and hard-to-learn dialogues due to voice recognition errors and
non-deterministic human behavior. It is an ideal benchmark because we faced the same
challenges in the Alexa Prize. The dataset contains 56 response classes, and it is split into
3,249 training dialogues, 403 validation dialogues, and 402 testing dialogues.

The Alquist conversational dataset is our private dataset collected from our previous
version of Socilabot competing in the first Alexa Prize Socialbot Grand Challenge. The
dataset consists of 37,805 dialogues between the user and the socialbot from the domain of
books. There are 344,464 message-response pairs in total. The average length of dialogues
is 9.11 pairs, the median is 7 pairs, and there are 23,633 unique responses. The dataset
is also noisy and hard to learn because it contains voice recognition errors, and some of
the messages come from uncooperative users. All 23,633 responses can be clustered into
30 semantically unique responses. This reduction can be achieved thanks to the fact that
dialogues were represented as a state graph. Each node in the state graph corresponds to
one of 30 semantically unique responses.

Metrics The main two metrics for topic-level intent recognition are turn accuracy and
dialogue accuracy. The turn accuracy shows the percentual number of dialogue turns where
the topic-level intent was recognized correctly. The dialogue accuracy shows the percentual
number of a dialogue where each turn had the topic-level intent recognized correctly.

Table 4.4: Set of best hyperparameters for each model founded by Bayesian hyperparameter
optimization on the validation set of bAbI Dialogue Task 6 and achieved Turn accuracy

Model

Hyperparameter Word2vec
Word2vec

+CNN
Word2vec

+RNN
fastText

fastText
+CNN

fastText
+RNN

LSTM size 85 109 219 55 245 505
Convolutional filters - 6 - - 21 -

LSTM dropout 0.92 0.79 0.74 0.85 0.80 0.94
Input LSTM dropout - - 0.91 - - 0.97
Convolutional dropout - 0.84 - - 0.72 -

Fully connected dropout 0.59 0.93 0.98 0.82 0.79 0.76
Learning rate 0.001 0.005 0.00005 0.008 0.0001 0.0003

Activation function tanh tanh relu relu relu relu
Input activation function - - tanh - - tanh

Adam epsilon 1E-8 0.1 1E-8 1E-8 1E-8 1E-8
Adam beta1 0.5 0.5 0.9 0.9 0.5 0.5

Turn accuracy 71.3% 70.4% 65.5% 69.4% 71.5% 68.0%
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Table 4.5: Testing accuracy of Hybrid code networks models

bAbI6 Alquist
Model Turn Acc. Dialogue Acc. Turn Acc. Dialogue Acc.

Bordes and Weston (2017) Bordes et al. (2016) 41.1% 0.0% - -
Liu and Perez (2016) Liu and Perez (2017) 48.7% 1.4% - -

Eric and Manning (2017) Eric and Manning (2017) 48.0% 1.5% - -
Seo et al. (2016) Seo et al. (2016) 51.1% - - -

Williams, Asadi and Zweig (2017) Williams et al. (2017) 55.6% 1.9% - -

fastText 57.6% 0.8% 86.9% 51.7%
fastText+CNN 58.9% 0.5% 90.6% 63.0%
fastText+RNN 54.9% 0.3% 80.6% 40.5%

word2vec 57.4% 0.4% 92.2% 68.0%
word2vec+CNN 56.3% 0.1% 92.6% 67.8%
word2vec+RNN 54.6% 0.1% 83.9% 45.2%

Results We found the best set of hyperparameters for each architecture on the valida-
tion set of bAbI Dialogue Task 6 by Bayesian hyperparameter optimization. They are
presented in Table 4.4. We trained the models with the best set of hyperparameters for
12 epochs on both datasets. The best model regarding turn accuracy on the bAbI Task
6 dataset is a model using a convolutional input layer and fastText embedding vectors,
which outperformed the baseline reported by Williams et al. (2017). This model achieved
a turn accuracy of 58.9%. The best model regarding turn accuracy on the Alquist con-
versational dataset is the model using convolutional input layer and word2vec embedding
vectors, which achieved a turn accuracy of 92.6%. The complete results are presented in
Table 4.5.

Sentiment

We have trained our sentiment model separately on two different datasets. The IMDB
movie review dataset (Maas et al., 2011) and the sentiment140 dataset (Go et al., 2009).
The IMDB dataset is a dataset containing long-form movie reviews with star ratings,
whereas the sentiment140 dataset contains tweets that have been annotated as positive or
negative based on the emotes used.

The model reached 0.88 on the validation set for the IMDB dataset, and 0.83 accuracy
on the test set for the sentiment140 dataset.

Table 4.6: Sentiment values for entities with general negative connotations

Entity IMDB data sentiment140 data

terrorism 0.38 0.53
Hitler 0.28 0.64
murder 0.24 0.38
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Figure 4.6: The figure shows the histogram of detected entity sentiments for both trained
models. Sentiment value 0 translates to the most negative and sentiment value 1 is the
most positive.

We compared the models to see how the detected sentiments differ for tweets containing
entities recognized by our system. From the Figure 4.6, it is clear that the model trained
on sentiment140 data heavily skews towards positive sentiments for various entities. While
we believe that could be helpful in order to keep interactions with users positive, the model
often fails to recognize desired negative sentiments for serious and generally negative topics
(see Table 4.6). Due to this, we are currently using the model trained on the IMDB dataset.

4.3.5 Error Analysis

We run analyses of the errors produced by the system. We manually went through 100
randomly selected conversations and marked the turns that we found incoherent (the en-
gagement of the system was not evaluated). Note that the evaluation was done on a
subjective basis. For each error turn, we marked which of the system components caused
the erroneous response (some turns can contain multiple errors). The distribution of the
errors is shown in Table 4.7. An error is marked only for those turns that produced a
response violating the coherence of the dialogue. There can be, for example, a turn with
a punctuation error, but the responses are still generated correctly—such a turn is not
marked as an error.

4.3.6 Conclusion and Next Steps

We designed a second version of the Alquist socialbot that addressed the shortcomings
of the previous version, specifically the lack of flexibility caused by large topical dialogue
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structures. We divided the NLU into top-level and top-level parts. The primary focus on
topic-level NLU, along with topic-switch detection, allows us to smoothly change topics
when appropriate while precisely navigating in a selected topical dialogue. We show a
competitive performance of the proposed topic-level intent recognition. Considering the
dialogue accuracy metric, there is, however, still room for improvement (Table 4.5) as the
longer dialogues tend to accumulate the error over the turns easily. Fortunately, from the
use experience perspective, this does not necessarily cause the dialog to fail, as the failure
still keeps the user within the discussed topic.

As shown in Table 4.7, most of the errors are caused by wrong topic switch detection. In
comparison to the topic-level intent recognition, this is a more significant error category as
it may result in disruption of the conversation by switching to the wrong topic or switching
when it is not appropriate. Therefore, as the next steps, we need to focus on smoother
transitions by decomposing the dialogues into smaller structures.

Table 4.7: Error distribution in the second version of Alquist. The analysis was done
manually on 100 conversations. Some of the analyzed turns contained multiple errors.
The most typical combination was an error in the Topic Switch module and in the Intent
module. Conversation examples are synthesized by our team based on observed patterns
in the data.

Type % Example

Topic Switch 44 %
Bot: . . . How is it going?
User: it’s going good what happened today in history
Bot: Well, I’m always busy as people keep chatting with me.

Intent 28 % User: how old are you (intent: how are you)
Punctuation 19 % User: good I’m 〈SEP〉 good you’re really good
Dialogue Act 6 % User: who’s boyfriend (DA: Other, correct Wh-question)

Dialogue Manager 4 %
Bot: . . . Who do I have the pleasure of speaking with?
User: why are fire trucks red
Bot: Hey Red, I’m happy to meet you!

4.4 Alquist: Utilizing Knowledge Graph

We continue to leverage the modular architecture of the conversational system. The shift
from a rich dialogue structure, which can present all the relevant information to the users
as they traverse through it, focused on a single topic as proposed by Pichl et al. (2017) to a
more modularized approach proposed by Pichl et al. (2018) contributed to a more flexible
conversational experience and easy content management. This eventually contributed to
the user experience as highlighted in section 4.6. Even though the flexibility was higher,
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there is still an inefficiency remaining within each sub-dialogue unit and while switching
between individual units.

To mitigate the errors related to the fixed dialogue structures, we propose a system,
described in Pichl et al. (2020) and in this section, using minimal conversational units—
adjacency pairs (Boyer et al., 2009). Adjacency pairs are conversational units that can
be chained flexibly to create a complex conversational structure. Thanks to the fact that
dialogues built using adjacency pairs are short, there is no need for strict topic switching,
which caused most of the errors as shown in Table 4.7. Moreover, we use a conversational
knowledge graph that stores the information available for use as well as the information
expressed by the users in previous sessions. The previous versions of Alquist were also able
to store users’ preferences; however, only in predetermined parts of dialogues. With the
new approach, the system can remember facts expressed at any point. The utilization of
the knowledge graph allows us to remember a significantly large number of facts extracted
during the dialogue, which can be subsequently used in the interaction by Alquist or asked
about by users.

4.4.1 Conversational Knowledge Graph

To be able to handle more complex interactions with the user, it is necessary to have access
to real-world knowledge and objective factual information as well as personalized (subjec-
tive) knowledge, such as opinions, preferences, and others. To represent the knowledge and
opinions of our system about the world, we have created an RDF graph database where
we used a dump of the Wikidata database8 as its base.

We have also designed a custom ontology that is to be partially mapped to the on-
tology used by Wikidata. Our ontology is inspired by other common ontologies such as
Schema.org9 and EVI. However, we expanded it with objects representing the user and
the bot. We also added properties modeling personalized relationships between the user
or bot and various other objects in the database. Examples of such properties are likes,
hates, hasFavorite, hasOpinion.

As shown in Figure 4.7, we also created custom annotation properties in the ontology
(e.g. doYou). These properties are tied to object properties. Their range is commonly a
string (e.g. “Do #DOMAIN# like #RANGE#”), and they represent delexicalized exam-
ples of sentence structures that represent the domain object property. This allows us to do
two things. We can automatically generate and update datasets for dialogue acts detection
directly from the knowledge base (KB). Furthermore, we can use the sentence structures
assigned to properties in adjacency pairs templates to generate system responses regarding
relationships between objects in the database.

Additional examples of sentence structures, such as:

◦ ProvideInformation Negative - #DOM#’s name is not #RAN#.

8https://www.wikidata.org/wiki/Wikidata:Database download
9https://schema.org/
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dummy_user
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“Do #DOMAIN# like #RANGE#?”
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 object
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Figure 4.7: Illustration of sentence structure examples as annotation properties

◦ OpenQuestion Object Positive - What is #DOM#’s name?

◦ YesNoQuestion Positive - Is #DOM#’s name #RAN#?

The new approach to representing knowledge allows the system to create a profile of
the user directly in the knowledge database based on the information the user shares with
the system. The system is then able to reference the profile during the conversation,
and this leads to more variability and higher personalization. However, this personalized
engagement needs to work in both directions—and so the profile of the bot is represented
in the knowledge base in the same way. The database contains a representation of the bot,
complete with its preferences, personal profile, likes, and dislikes. The profile is adjusted
and anonymized for the purposes of the competition, but the system can draw information
from it in real-time and include it in the conversation.

ASR Hypotheses

Natural Language Understanding
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Dialogue Acts Entity Linking

Property Domain - Range
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Dialogue Management
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Runtime Context

Additional Actions
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Figure 4.8: Alquist 3.0 architecture schema
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4.4.2 Natural Language Understanding

As the system architecture is now highly focused on the adjacency pairs and knowledge
graph, we need to introduce additional NLU models to work with smaller language units
and structures from the knowledge graph effectively. The first model is a sentence seg-
mentation that predicts punctuation and is used as a segment separator. Knowledge-
graph-related models are entities linking a property detection that recognize the respective
aspects in the sentence and map them to the knowledge graph nodes and edges.

Sentence Segmentation

The goal of this model is to split the sentences into clauses. The standard way how to
tackle this task is to decide based on punctuation marks. However, the transcripts from
the ASR modules typically consist of speech hypotheses without punctuation. Therefore,
we start by using punctuation restoration, and afterward, we split the sentences based on
the restored punctuation marks.

Compared to the former Alquist system, where we used a bidirectional neural network—
TBRNN (Tilk and Alumäe, 2016)—we decided to use a BERT-based architecture (Devlin
et al., 2019). Our model consists of a pre-trained BERT model (on a masked language
model task) layer with a linear classification layer that predicts the punctuation mark
after the middle word of a fixed-size input sequence.

Since the model predicts only the punctuation after the word in the middle, we need to
add padding to the beginning and the end of the input speech hypothesis. Afterward, we
feed the model with sequences of a fixed segment size based on the moving window, and
the model returns one of the possible punctuation characters for each word in the original
speech hypothesis.

Dialogue Act Detection

The key concept of the system is the processing of adjacency pairs. It is highly connected
to the identification of the dialogue acts in the message of a user. We created a custom
hierarchical structure for the dialogue acts. We treat this problem as a simple text classifi-
cation task where each class is defined by the combination of the tags on the path from the
tree root to a leaf node. The description of the classes is reported in Pichl et al. (2020). We
defined in total 37 leaf classes, each of the classes can be mapped to one or more dialogue
act classes presented in the Switchboard dataset10 Godfrey et al. (1992).

The data for the dialogue act detection model were created manually through a template
mechanism which we have been using since the previous version of our system. The created
data are stored in the KG. We adopt the same model architecture that we have been using
for intent detection and dialogue act detection described earlier in the previous sections.

10https://web.stanford.edu/~jurafsky/ws97/manual.august1.html
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Entity Linking

As our new approach is based on working with a Knowledge Graph (KG), we need to
identify each entity with its unique KG ID to be able to generate a proper response. This
task is commonly referred to as entity linking. Entity linking, as stated in Broscheit (2019),
consists of three parts: Mention Detection (MD), Candidate Generation (CG), and Entity
Disambiguation (ED).

To generate mentions (text spans of potential entity occurrence), we used a neural
network based on a bidirectional LSTM and BERT model, where the training set was
manually labeled from a small subset of the user’s messages. We test our model on the
sequence labeling task. See the result in Table 4.9.

After retrieving the possible text spans, we combine the candidate generation with
entity disambiguation. First, we have to decide if the entity is from our “private” knowledge
graph or from the “general” knowledge graph (for example, Wikidata). We trained our
neural network model to classify into two label types. If the model returns the label
classifying the entity candidate as one from our “private” KG, then we have a set of
manually designed rules to decide which possible entity should be assigned to that specific
text span. The other case is that the candidate is from the “general” KG: then we query
an Evi knowledge graph service to make the mention resolution. We collect all candidates
for possible text span that the system returns and query the Evi knowledge graph service
again to get their IDs (more specifically, Wikidata ID).

Further processing is coupled with property detection (see section 4.4.2), where we
map the text span to two classes – domain or range. We have to match predictions from
property detection and entity linking together to be able to decide which entity (linked to
the knowledge graph) is the domain and which one is the range.

Property detection

The knowledge graphs store facts as triples, with each triple containing two entities and
one relation. The user utterance can be mapped to this triplet—the entities are called
domain and range; the relation between them is called property. To properly handle the
response, we need to retrieve the property out of the user’s message.

We tackle the problem of property detection as a multi-task model. These models are
showing promising results on tasks like joint slot-filling and intent classification Liu and
Lane (2016).

Based on Yu Wang (2018), we design our neural network with the approach based on
the multi-task loss function. The model is trained on two tasks—sequence labeling and
sentence classification. The sequence labeling identifies the domain and range entities in
the text. This is a similar approach to the proposed entity linking task. However, the
domain and range entities are a subset of all entities that might occur in the text. To align
the domain and range entities with their linked KG IDs, we match the overlapping entities.
The classification part of the models classifies the utterance into one of the property classes.
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We safely assume each input to contain only one property since we use segmented results
as an input for this task.

4.4.3 Adjacency Pairs and Dialogue Management

The goal of the dialogue management part of the proposed system is to map the user
utterance to a subgraph from the KG using the NLU annotations described above. The
NLU annotations are done for each ASR hypothesis. Moreover, sentence segmentation
may create multiple segments for a single user utterance. In that case, the subsequent
annotations are done for each segment individually.

Once the entities and properties are linked to the corresponding KG IDs, the system
ranks each linking using the ASR hypotheses score and individual annotations scores. For
example, for the question “What is your name” the entity type is a chatbot, the property
is a name, and the dialogue act is an open question. For each dialogue act class, there
are several classes that may follow the original one while not breaking the coherence of
the conversation. This can be expressed as an adjacency pair matrix. Based on the
matrix, we select candidate edges from the KG. The candidate edges are then ranked
based on the entity relevancy consisting of entity popularity and semantic similarity with
the previous utterances of the conversation. Each entity’s popularity is updated when used
in conversations that were rated with four or five stars.

4.4.4 Experiments

Sentence Segmentation

We illustrate the results of the sentence segmentation models in Table 4.8. There is a sig-
nificant improvement in all metrics compared to the previous model (TBRNN). Moreover,
since the BERT model is more computationally demanding, we also analyzed the perfor-
mance of various BERT alternatives that use distillation technique (Sanh et al., 2019) or
a reduction of the number of parameters (Lan et al., 2019). Based on the observed results,
we can conclude that all tested models outperform the former bidirectional one.

Table 4.8: Results of the experiments on IWSLT 2012 English dataset.

Model Comma Period Question Overall
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

TBRNN 65.5 47.1 54.8 73.3 72.5 72.9 70.7 63.0 66.7 70.0 59.0 64.4
BERT 74.9 66.8 70.7 81.8 85.5 83.6 66.7 73.9 70.1 74.4 75.4 74.8
DISTILBERT 70.3 58.6 63.9 81.4 76.3 78.8 78.4 63.0 69.9 76.7 66.0 70.9
ALBERT 84.0 44.1 57.8 77.0 87.6 82.0 64.6 67.4 66.0 75.2 66.4 68.6
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Entity Linking

We experimented with separate sequence labeling tasks to identify the entity mentioned
in a text. We use the standard CONLLL 2003 dataset (Tjong Kim Sang and De Meulder,
2003) and an in-house dataset (Alquist 3.0) of manually labeled conversations. Our dataset
contains 2,486 utterances. We split the data in an 80:20 ratio for the train and test splits,
respectively. The Bi-LSTM model uses Fasttext embeddings as an input (see embedding
selection in section 4.4.4. The Table 4.9 shows the results of the selected models on the
described datasets.

Table 4.9: Results of a sequence labeling subtask

Model Dataset Precision Recall F1

Bi-LSTM CoNLL 2003 90.0 89.4 89.8

Bi-LSTM Alquist 3.0 data 93.6 92.0 92.6

BERT CoNLL 2003 91.3 92.1 91.7

BERT Alquist 3.0 data 94.4 95.0 94.7

Moreover, we evaluated the overall performance of the entity linking pipeline, which
consists of sequence labeling, knowledge type classification, and rule-based ID mapping.
For a knowledge type classification, we use the same Bi-LSTM and BERT model plus an
additional simple logistic regression classifier on top of the Fasttext embeddings. We use
our Alquist 3.0 dataset, where each entity mention is also labeled with the corresponding
KG ID. Some of the entities in the text may not correspond to any of the KG IDs. These
entities are omitted from the evaluation. Table 4.10 shows the result of the full entity
linking pipeline.

Table 4.10: Results of a combined sequence labeling, knowledge type classification, and ID
mapping

Labeling+Type Model Precision Recall F1

Bi-LSTM+LR 82.8 79.5 81.1

Bi-LSTM+Bi-LSTM 84.2 81.3 82.7

Bi-LSTM+BERT 84.9 83.7 84.3

BERT+LR 83.4 80.6 82.0

BERT+Bi-LSTM 84.3 81.9 83.1

BERT+BERT 84.8 84.2 84.5
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Property Detection

To find the most suitable word embeddings in our proposed system, we selected the fol-
lowing models for our experiments:

◦ GloVe (Pennington et al., 2014) - 300d

◦ Fasttext (Bojanowski et al., 2017; Mikolov et al., 2018) - 300d

◦ Bert (Devlin et al., 2019) - 768d - without fine-tuning

We selected the publicly available ATIS dataset for embedding selection and property
detection experiments. The data contain spoken utterances classified into one of 26 intents.
Each token in a query utterance is aligned with IOB labels representing the slot values.
Primarily, the dataset is used for intent recognition and slot filling, but it is sufficient
for our testing purposes with minor modifications. The results on both the original and
modified dataset are shown in Table 4.11. All embeddings are used as an input for the
Bi-LSTM model. From the results, we can see that the best-performing embedding type
is Fasttext. We adopted it for further experiments, including the previously mentioned
entity linking.

To modify the data for our property selection task, we map each intent to the list of
properties from the Knowledge Graphs. Additionally, we label each entity, whether it is a
domain or range.

The final model of property detection has two outputs. The sequence labeling output
will classify each token into three categories – domain, range, or outside. The text classifi-
cation output predicts the label of the property (mapped to our KG), which is mentioned
in the user’s message.

Table 4.11: Experiments results on ATIS dataset. Intent F1 and Slot-filling (SF) F1 are
measured on an unmodified dataset. SF D&R F1 is a metric measured after each entity
tag is divided into Domain and Range categories. The intent class is directly mapped to a
KG property.

Embeddings Intent F1 SF F1 SF D&R F1

BERT 92.4 95.7 93.3

GloVe 90.7 96.8 94.1

FastText 95.7 98.4 95.4

4.4.5 Conclusion and Next Steps

We evaluated the individual parts of the architecture leveraging utterance to Knowledge
Graphs mapping with an adjacency-pair-based strategy for constructing the responses. The
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segmented utterances are transformed into triplets that may correspond to a subgraph from
the KG. We evaluated individual NLU algorithms related to the architecture, which show
promising results on each task. However, the approach suffers from a lack of relevant
knowledge in existing KGs and from the increased complexity of dialogue creation.

4.5 Alquist: Generative Models and Personalization

The adaptability on both language and content sides introduced by adjacency pairs and
knowledge graphs contributed to the flexible flow of the conversation. One of the prerequi-
sites to bring the flexibility to a more engaging level is to have proper content stored in the
knowledge graph. When initialized with a standard knowledge source such as Wikidata,
we obtain a large set of factual information. However, information about current events,
trending news, and fun facts are typically not present in such a knowledge base. The
original aim of the system was to obtain this additional information and store it in the
knowledge graph. However, such a process is rather slow and requires a significant amount
of traffic to be successful.

As a minor improvement to the described issues, we added several domain-specific
sources and trivia sources for more engaging conversation. However, a more robust ap-
proach is needed to handle various and mostly unexpected inputs. Therefore, we propose
a system leveraging out-of-domain detection and generative models to handle inputs that
cannot be effectively responded to using dialogue scenarios or knowledge base informa-
tion. Additionally, the personalization of the conversation is introduced by a continuous
exploration and exploitation of the information about a user. The system is built using
principles we described in Pichl et al. (2022) and the actual system for the competition we
described in Konrád et al. (2021).

4.5.1 Architecture

We built the system on top of our multi-purpose conversational platform called Flowstorm
(Pichl et al., 2022). The platform allows to rapidly create conversational flows. We enriched
it with generative model integration that can be dynamically triggered in various stages
of the conversation. Unlike in the previous versions of the system, the decision to use a
generative model is not made at the top level but is tightly connected to the proposed
out-of-domain mechanism.

The out-of-domain (OOD) detection depends on the specific dialogue structure, i.e.,
the system needs to recognize that the dialogue is not able to handle the input. For that
reason, it is designed as a part of the intent classifier that recognizes that a given input
is unexpected. The OOD as part of a hierarchical intent recognition will be described
in chapter 5. Once the OOD input is recognized, the system uses the Neural Response
Generator—neural generation model trained on large dialogue corpora that produces a
response based on the context of the dialogue. A combination of dialogues as originally
described by Pichl et al. (2018), OOD recognition (subsection 4.5.3), and the Neural Re-
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sponse Generator (Konrád et al., 2021) allows us to utilize high-quality hand-designed
dialogues while adding the necessary resilience to unexpected user inputs that is a crucial
component for coherence in open-domain dialogue systems.

The proposed innovation of an engagement uses the idea that in order to entertain the
conversational partner, one has to learn what entertains them first and then utilize the
knowledge in the following conversation. This might remind us of a famous problem of
computer science: the problem of exploration and exploitation. The socialbot is in the
role of an entertainer who has zero prior knowledge about the user. Therefore, it has to
explore the user’s preferences first. However, it can’t stay in a pure exploration mode for
the rest of the conversation. Gradually, it has to proceed into an exploitation phase after
some time to maximize its engagement score. This philosophy is reflected in the design of
the components that the fourth version of Alquist is made of.

For the exploration part, in which Alquist learns the preferences of the user, the main
research and development emphasis was put on Skimmer (subsection 4.5.2; a component
that extracts information the user mentions without the bot explicitly asking for it), User
Profile, and Knowledge Utilization. The mentioned components collect and organize the
pieces of information mentioned by the user that are utilized in the following dialogue.

For the exploitation part, in which Alquist utilizes the knowledge about the user, the
main emphasis was put on the Dialogue Manager, Trivia Selection, Intent and Out-of-
Domain classification (subsection 4.5.3), and the Neural Response Generator. Those com-
ponents are responsible for selecting the next action in the dialogue and response produc-
tion that utilizes the knowledge about the user.

Figure 4.9 presents the organization of all of Alquist’s components. We took Pichl et al.
(2017, 2018, 2020) as our starting point. The unchanged components are described in the
previous sections. The flow of the components is as follows. First, the Skimmer analyses
the user input for the mentioned pieces of information. The pieces of information are stored
in the User Profile. Based on the values stored in the user profile, Dialogue Management
selects the next dialogue to start or selects and presents some trivia related to the actual
topic of a conversation. The dialogue is directed according to the Intent classification of
the user input. Finally, if the Out-of-domain classification recognizes an unexpected user
input, the Neural Response Generator produces a coherent response based on the context
of the conversation.

4.5.2 Skimmer

The Skimmer component is intended to extract as much information about a communica-
tion partner as possible. Such information can be expressed in two basic scenarios. The
first scenario is when the bot asks a user a direct question (e.g., “Do you have a brother?”)
and stores the answer to the question. In this scenario, the bot is aware of the dialogue
context, it knows what type of answer is expected, and it can store the response in the
User Profile accordingly. Using the stored value, the bot can carry out a highly personal-
ized conversation and ask relevant questions such as “How is your brother today?”. This
strategy leads to a more personalized conversation.
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Figure 4.9: The system components are shown in two different orders based on the dialogue
strategy—exploration and exploitation. In the exploration strategy, our bot uses dialogues
to extract information about the user. In the exploitation strategy, our bot utilizes the
information stored in the User Profile and selects dialogues accordingly. The grey compo-
nents are not essential for the corresponding strategy, but they are not disabled completely.

Since we do not want to disrupt the fluency of the dialogue by asking too many personal
questions to gather information about a user, we want the bot to have the ability to extract
the information from each user utterance. For example, the information about the user
having a brother can be mentioned “by the way” in the conversation (e.g., in a movie-related
conversation, the user may mention “I was with my brother at the cinema yesterday.”). We
want to extract the information from the sentence regardless of the topic being discussed.
For this purpose, we implemented the component called Skimmer. It skims through each
utterance and saves the values in the User Profile based on a list of rules. Each of the rules
contains the following attributes:

◦ Regular expression - a set of patterns which must or must not (negative patterns) be
contained in the utterance.

◦ User Profile attribute - the name of the attribute where the value will be stored.
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◦ Value - the value stored in the attribute, typically true, false, or a matched group of
the regular expression.

The component processes the user utterance in the following way. It takes each rule
from the list and tries to match it with the corresponding regular expression. If it is
matched, the value is stored in the specific attribute of the User Profile.

4.5.3 Intent and Out-of-Domain Classification

Following the concept of dialogue presented in the second version of Alquist (Pichl et al.,
2018) using the Flowstorm (Pichl et al., 2022) platform as a base, we design each dialogue
as a tree structure. A crucial point in the conversation structure is where we expect the
user input/user utterance. Each user utterance is then classified into a specific intent for
which the dialogue designer manually writes training utterances. However, the dialogue
designer cannot incorporate each possible intent because of the complexity of language and
the open-world assumption (Keet, 2013). Based on that, these user utterances for which
the dialogue is not prepared are called out-of-domain input utterances. On the other hand,
the in-domain intent is a user utterance for which the dialogue designers have prepared a
response. Such a response is designed in a coherent and engaging conversational style.

We have also incorporated the concept of intent hierarchy inherited from the Flowstorm
dialogue architecture into our dialogue design. It comes with two types of intents— global
and local (contextual) intents plus Out of domain (OOD). However, despite the fact that
OOD detection has been receiving more attention lately (Marek et al., 2021; Tan et al.,
2019a), the current datasets for evaluating the OOD performance (Larson et al., 2019;
Gangal et al., 2020; Lee and Shalyminov, 2019) are not designed for testing the hierarchical
structure of our dialogues and contain mainly explicit commands. To solve this issue, we
created our testing data from anonymized queries of real users. The following subsection
describes our initial experiments with the hierarchical intent structure used in the Alquist
socialbot during the Alexa Prize Socialbot Grand Challenge 4. The extended approaches
and experiments are shown in chapter 5.

Model

We experimented with various approaches to intent recognition focused on usage as part
of the hierarchical dialogue structure (shown in Figure 4.10). The hierarchical structure
provides the dialogue designer with modularity in creating the flow of the conversation but
puts a significant emphasis on the effectiveness of the algorithms for intent classification.

To maintain effectiveness, we train a separate model for each level of the hierarchy as
described in chapter 5. We show the whole classification system in Figure 5.7. The system
works in two steps. First, we need to determine which intent model in the hierarchy is
appropriate—local or global. A brief description of the approach is as follows: We utilize
cosine similarity over sentence embeddings between user queries and train examples of
each intent to classify utterances as local or global intents while prioritizing local intents.
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Figure 4.10: Hierarchical structure of dialogues. The dialogue consists of the nodes rep-
resenting user inputs (green nodes) and bot responses (blue nodes). The chained nodes
create a diverging flow of conversation. We omitted some of the nodes for clarity. The
user input nodes represent intents. There are two types of intents. The user utterance
can be classified into one of the local intents (green boxes) specific to a certain turn of the
dialogue, plus any global intent (red box) that can be applied in any turn of the dialogue.
Moreover, the user utterance can be classified as out-of-domain.

The priority is based on using a stable sorting algorithm over cosine similarities between
sentence embedding of the user utterance and the examples of each intent. We also allow
manual setting of the threshold for local and mainly for global intents, leading to the
filtering out of the intents if the cosine similarity is not high enough. In the second step,
the utterance is classified into a specific intent by the corresponding logistic regression
selected in the previous step. We use logistic regression because of the speed of its training
and the proven performance in low-resource scenarios (see Figure 4.11). Thus, the final
intent classification is performed by logistic regression. More detailed descriptions and
experiments are shown in chapter 5.

Datasets

We performed our analysis on a publicly available dataset as well as on manually labeled
anonymized queries:

◦ CLINC150 Dataset (Larson et al., 2019)

◦ ALQUIST 4.0 Dataset

A summary of the datasets is shown in Table 4.12 and Table 4.13. All samples in the
ALQUIST 4.0 Dataset were carefully checked for consistency and drawn from aggregated
and anonymized queries. The datasets generated during this study are not made available
for privacy reasons. We artificially partitioned the CLINC150 Dataset to support the
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hierarchical structure. The partitioning was performed as a random selection of 16 intents
from the dataset and then divided into two sets, one set representing local intents and the
other representing global intents. The ratio was set to 1:3 to represent a typical situation
in a dialogue. The split results in 4 local intents and 12 global intents. The process was
repeated 15 times. The local intents drawn in a step are excluded from the next selection.
Global intent selection allows the selection of a single intent multiple times. This leads
to the resulting dataset containing some of the samples duplicated. The resulting dataset
statistics are shown in Table 4.13, and the related experiments results are shown in the
subsection 4.5.5.

Table 4.12: ALQUIST 4.0 Dataset

Type of utterances Average Per Intent Total Utterances

Local - Train 564 3952
Global - Train 399 2793
Local - Test 27 193
Global - Test 49 344
OOD - Test 61 429

Table 4.13: CLINC150 Augmented Dataset

Type of utterances Average Per Intent Total Utterances

Local - Train 400 7200
Global - Train 100 21600
Local - Test 120 1800
Global - Test 330 5400
OOD - Test 1200 1200

4.5.4 Neural Response Generator

A Neural Response Generator (NRG) is a neural conversational response generation model
trained on large conversational corpora. It generates a response based on the most recent
turns of dialogue. We use such a model in Alquist in two settings. The neural response
generator creates a response for out-of-domain user inputs, and it generates follow-up
questions about trivia.

The motivation to use a NRG for the Out of domain (OOD) inputs is the following.
We put the main content emphasis in Alquist 4.0 on hand-designed dialogues. Dialogues
are represented as graphs (Figure 4.10). They consist of nodes representing the user inputs
and the bot responses structured in diverging dialogue flows. Although they allow a human
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Table 4.14: A hypothetical dialogue situation, in which a statement–question control mech-
anism of the NRG is used. The first user input is identified as out-of-domain. The Neural
Response Generator produces a question that is followed by the user’s utterance. That is
followed by a generated statement that transits into a hand-designed dialogue.

Alquist (Hand-designed dialogue): What do you do in your free time?
User (Out-of-domain): I draw pictures.

Alquist (NRG-Question): What kind of pictures do you like to draw the most?
User: I usually draw portraits

Alquist (NRG-Statement): I see. Portraits are hard to make.
Alquist (Hand-designed dialogue): Do you visit galleries?

designer to create high-quality conversations with maximum control over the dialogue flow,
the designer can not predict all possible flows the conversation can go through. We can
detect the situations in which the user diverts from the predesigned flow by the OOD
detection. However, the problem of how to continue the conversation in a meaningful way
emerges. The fact that we can’t predict all possible flows of the conversation also means
that we can’t design them. Neural response generators that can create a response on the fly
based on the context of the dialogue and the user input are the way we solve the problem.

4.5.5 Experiments

Our analysis includes an inspection of the input features (embeddings). We include the
following sentence embeddings:

◦ Average of word embeddings FastText (Mikolov et al., 2018)

◦ Universal Sentence Encoder - Deep Average Network (USE-DAN) (Cer et al., 2018)

◦ Universal Sentence Encoder - Transformed-encoder (USE-TRAN) (Cer et al., 2018)

The model described in section 4.5.3 is tested in two ways — automatically and man-
ually. The automatic evaluation is performed over our ALQUIST 4.0 Dataset (shown in
Table 4.12) and the artificially hierarchical augmentation of the CLINC150 Dataset (shown
in Table 4.13). The manual evaluation was performed on aggregated data selected from
anonymized user conversations with the socialbot. We collected all user utterances from
these parts of dialogues and performed the human evaluation. The results can be seen in
Table 4.15. Besides evaluating the performance solely for the OOD detection, we looked at
the performance of the local and global intents. The results are discussed in the following
section.

To select the most suitable model for the final intent classification, we measure the differ-
ence between the three most common classification models—Logistic Regression, Support
Vector Machine, and the 2-layer Neural Network. We focus on the necessary number of
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Table 4.15: Manual evaluation on aggregated data

True intent
Local intent Global intent OOD

Local intent 3451 23 35
Predicted intent Global intent 0 472 0

OOD 0 15 238

needed examples to achieve sufficient accuracy. The evaluation is shown in Figure 4.11
and highlights the problem of the neural network when dealing with low-resource scenar-
ios. The measurement was performed over CLINC150, randomly choosing five classes (our
average number of intent classes for the intent model) and randomly choosing N examples.
This procedure was repeated 25 times, and the shown values are averaged. We selected
Logistic Regression as a model performing well in the low-resource scenario.

Figure 4.11: Dependency between the number of examples and the accuracy for the
three most common classification models. Measurement was performed on the CLINC150
Dataset. The number of examples is on a logarithmic scale and was measured on a range
from 1 to 100 train examples.
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4.5.6 Results and Discussion

Taken together, our results (shown in Table 4.16) suggest a relationship between the type
of embedding and the performance of the classification model. The difference in results can
be explained by the word-order sensitivity of advanced embedding techniques. Another
important aspect is the memory requirements and the speed of obtaining the embedding
(shown in Table 4.17). The results suggest the usage of USE-DAN as an appropriate
embedding layer.

It should be mentioned that the performance on each level of the hierarchy remarkably
differs between our two datasets. We believe that it is caused by the artificial augmentation
of the CLINC150 Dataset and its unrealistic representation of real-world use cases. We
should also notice the higher performance for the local intent classification than for the
global intent classification (notable mainly on the ALQUIST 4.0 Dataset). It is caused by
the hierarchical structure of our model, which emphasizes the local intent over the global
as was described in 4.5.3. This is aligned with our experience that staying in the local
context of the dialogue is beneficial for coherence.

The performance of the OOD detection needs to be evaluated with respect to precision
and recall. The high precision and lower recall indicate that the algorithm is suitable for
classifying OOD in the conversational domain because we prefer false negative over false
positive—it supports the consistency of the dialogue. In addition, we performed a human
evaluation (shown in Table 4.15), which demonstrates the performance on real-world data.
It supports previously stated conclusions.

Table 4.16: Intent classification results

CLINC150 ALQUIST 4.0 DATA
Embeddings Intent type Precision Recall F1 Precision Recall F1

FastText
Local 99.6% 91.6% 95.2% 85.5% 61.6% 68.7%
Global 98.9% 89.3% 92.8% 67.8% 42.7% 48.2%
OOD 99.8% 44.1% 61.2% 99.8% 81.3% 89.6%

USE - DAN
Local 99.9% 96.5% 98.1% 90.8% 69.5% 74.3%
Global 99.6% 96.6% 98.0% 77.0% 54.7% 60.9%
OOD 99.9% 89.0% 94.2% 99.9% 83.8% 91.2%

USE - TRAN
Local 99.5% 97.7% 98.5% 80.0% 60.9% 65.5%
Global 99.5% 97.7% 98.5% 85.4% 59.6% 67.2%
OOD 99.9% 91.1% 95.3% 99.9% 85.6% 92.2%

4.5.7 Conclusion

In order to actively engage the user in the conversation, we have developed Skimmer, a
component that learns about the user from their messages and fills in information in their
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Table 4.17: Requirements of different embedding algorithms

Embeddings Speed RAM usage

FastText 200 it/s 190 MB
USE - DAN 120 it/s 1765 MB
USE - TRAN 25 it/s 1650 MB

User Profile. We are then able to utilize what we have learned about the user’s interests
and personality further in the conversation, making it evident that the socialbot is invested
in learning more about the user, remembers their preferences, and takes them into account
during the conversation.

We have introduced Out of domain query detection as a core functionality of our system.
This allows us to hand over more control of the conversation to the user, which makes the
socialbot seem more responsive to the user queries. However, it also introduces a problem
of how to handle the OOD responses.

In order to keep the conversation engaging even when moving in an unexpected di-
rection, we have also integrated two generative Neural Response Generators. Firstly, the
Neural Response Generator triggers when the user input is classified as OOD. Secondly,
we utilize the NRG to generate a follow-up prompt when presenting the user with trivia
relevant to the currently discussed topics. However, the actual approaches to response
generation are outside the scope of this thesis. We provide only the overview to provide a
complete view on OOD handling.

4.6 Evaluation

In this section, we show the overall evaluation of all described versions of the Alquist social
bot. The objective evaluation of conversational systems is not a straightforward task.
Besides the evaluation of individual tasks mentioned earlier in this chapter, we focus on
the main metrics of the Alexa Prize Socialbot Grand Challenge, namely user rating and
conversation duration. During each year of the competition, the average user ratings were
provided on a daily basis, reporting the one-day average (L1d) and the last 7 days’ average
(L7d). The L1d values have a high fluctuation over time, while the L7d values provide a
more stable view of the socialbot performance. Time conversation duration values were
provided as the median duration over the last 7 days and 90th percentile duration over
the last 7 days. The number of conversations during the middle phases of the competition
was, on average, 6,000 per week and 11,000 per week during the final phases. The users
provided ratings for approximately 15% of the conversations.

The results of the first version of the system called Alquist 1.0, are shown in Figure 4.12.
The L1d values were not available during the first phase of the competition therefore,
there are missing values at the beginning of the chart. As the first system in the row, it
shows the lowest values at the beginning when not all of the components were ready. The
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system built on top of the Structured Topic Dialogues (STDs) allowed us to continuously
improve the content coverage to create more engaging conversation. However, improving
the content coverage using the monolithic approach stopped increasing both the rating and
conversation duration in the second half of the competition, as shown in Figure 4.12a and
Figure 4.12b. At the end of the competition, the Alquist 1.0 was a second-place winner
with an average rating of 3.44 and a median conversation duration of 2 minutes and 6
seconds Table 4.18.
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Figure 4.12: The overall performance of Alquist 1.0 throughout the competition

Redesigning the monolithic approach in Alquist 2.0 also resulted in a cold start (Fig-
ure 4.13) during the second year of Alexa Prize Socialbot Grand Challenge (APSGC) as
the previously created dialogue structures needed to be redesigned in order to respect new
NLU and DM approaches. Compared to the previous version, the sub-dialogue structures
allowed more rapid development and, combined with separated topic-level and top-level
intent recognition along with topic switch detection, contributed to longer and more en-
gaging conversations. We managed to keep increasing the rating and duration throughout
the entire duration of the competition. This was thanks to the variable flow allowed by
dynamic topic switching, compared to the previous approach, where the topic switch could
be executed only by matching a corresponding intent class. At the end of the competition,
the Alquist 2.0 was once again a second-place winner with an increased average rating of
3.6, a median conversation duration of 2 minutes and 13 seconds, and a 90th percentile
conversation duration of 12 minutes and 49 seconds (Table 4.18).

Alquist 3.0 leveraged the structure from its predecessor, resulting in high ratings and
durations from the beginning. Additionally, the KG was initialized with multi-domain
content using Wikidata. The adjacency-pair-based content was iteratively added on top of
the sub-dialogues. The main contribution of the architecture was better flexibility, which
led to ratings above 3.7 and 90th percentile durations above 16 minutes and 40 seconds in
the middle of the conversation. However, the lack of handling a wide range of utterances
eventually led to a decrease in the metrics. At the end of the competition, the Alquist 3.0
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Figure 4.13: The overall performance of Alquist 2.0 throughout the competition

was a third-place winner with an average rating of 3.59, a median conversation duration
of 2 minutes and 6 seconds, and a 90th percentile conversation duration of 12 minutes and
31 seconds.
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Figure 4.14: The overall performance of Alquist 3.0 throughout the competition

The hierarchical approach proposed as the architecture for Alquist 4.0 was compati-
ble with the previous approaches, resulting in easy resuing of the existing content. The
incorporation of OOD detection in combination with the generative models resulted in in-
creasing rating and conversation duration. However, if we compare the absolute values of
both ratings and duration with the previous year, we can see the values are lower overall.
This trend was common for all of the competitors in APSGC and is also described by Hu
et al. (2021). They report a 9.7% decrease in rating compared to the previous year. This
was the first time when the ratings and durations decreased compared to the previous year
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of the competition. The possible explanation is that due to the rising popularity of the
generative models, user expectations grew as well.

However, the variability in the discussed topics achieved by novel OOD detection cou-
pled with NRG contributed to the coherence and engagingness significantly, resulting in
the Alquist 4.0 winning first place with an average rating of 3.51, a median conversation
duration of 1 minute and 30 seconds, and a 90th percentile conversation duration of 9
minutes and 11 seconds.
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Figure 4.15: The overall performance of Alquist 4.0 throughout the competition

User ratings and associated conversation duration metrics are influenced by various
factors, many of which are subjective in nature. Considering the difficulty of the task of
objective conversation evaluation and the competition setup, where the goal is to compare
the socialbots, these metrics represent a reasonable estimation of the socialbot quality.
Additionally, some of the users provided us with text feedback. We use the feedback along
with individual component benchmarks to estimate the contribution of individual parts of
the proposed architectures. The summarized results of all socialbot versions are outlined
in Table 4.18.

Table 4.18: The final performance of Alquist socialbot in Alexa Prize Socialbot Grand
Challenges and their corresponding NLU approaches.

System NLU # Dialogues
Avg.
Rating

Median
Time

90th Percentile
Time

Alexa
Prize

Alquist 1.0 Single-level intents 16 3.44 2:06 8:24 2nd
Alquist 2.0 Topic-level+Topic Switch 164 3.6 2:13 12:49 2nd
Alquist 3.0 KG mapping 164 3.59 2:06 12:31 3rd
Alquist 4.0 Hierarchical+OOD 273 3.51 1:30 9:11 1st
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4.7 Conclusion and Main Contributions

We introduced four versions of a socialbot architecture. The architectures in the respective
competition concern every component relevant to the conversational system as described
in chapter 2. This thesis contributed to the Natural Language Understanding (NLU) part
of these architectures. The architecture designs in all versions of the socialbot focus on a
hybrid approach, combining the end-to-end approach with a controllable dialogue design.
This approach requires modifications on the NLU level in comparison to the standard
approaches.

First, we introduced a monolithic approach with traditional single-level intent detec-
tion and entity recognition. The intent recognition operated across the Structured Topic
Dialogue (STD) units. The lower-level NLU analysis was done using only a set of pre-
defined rules. This approach formed a baseline for a socialbot, showing the strengths and
weaknesses of the hybrid approach. The possibility to switch between retrieval, generated,
or templated content is one of the biggest strengths. However, the balance between dis-
ruptive topic switching and unnatural continuation of the current flow is the challenge we
identified for the upcoming versions. Overall, Alquist 1.0 was awarded as a second-place
winner during the APSGC.

The second version contributed with a separation of top-level and topic-level intent
recognition. Additionally, using a topic graph capturing hierarchical relations among in-
dividual topics with topic switch components allowed the users to navigate seamlessly
through the conversational topics. The entity sentiment enhanced the conversation with a
socialbot opinion about the highly discussed entities. Overall, Alquist 2.0 was also awarded
as a second-place winner during the APSGC.

The still-challenging topic-switch detection task resulted in the architecture based on
the elementary adjacent-pair-based units in Alquist 3.0. The NLU was focused on utterance
segmentation and mapping each segment to a corresponding triple in the KG. It resulted
in a very flexible dialogue design. Overall, Alquist 3.0 was also awarded as a third-place
winner during the APSGC.

Alquist 4.0 was built on top of the Flowstorm platform, which was created based on
the experience from the previous socialbot versions. The NLU contributions were inherited
from the platform and are described in more detail in the following chapter. In summary,
it includes the OOD detection that significantly contributes to the seamless inclusion of
the generative models into to the hand-designed conversational flows. Overall, Alquist 4.0
was the first-place winner of the Alexa Prize Socialbot Grand Challenge (APSGC).

The contributions on the side of the architecture designs cover multiple parts of the
system. The goal was not to focus on a single component but rather on the system as a
whole, emphasizing the overall performance. As the systems were utilized in production
and handled over 10 million conversational turns in total, we examined the performance
considering both the key metrics and computational resources.
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Chapter 5

Modular Dialogue Architecture With
Hierarchical Intent Recognition

As described in the previous chapter, we have explored various architectural modifications
of a conversational system mainly oriented to an open-domain conversation. All of the
described architectures have modularity and a hybrid approach as the key point. Addi-
tionally, we see the importance of effective dialogue design supported by a proper software
tool. As outlined in chapter 2, minimizing manual work during the dialogue creation has
always been one of the most critical focus points within the NLP research community. The
very first systems required a lot of manual rules to establish a reasonable conversation on a
very limited domain (Weizenbaum, 1966; Wallace, 2003). In contrast, the recent progress
in Large Language Model (LLM) capabilities shows more than promising results of using
such models controlled using simple prompts.

LLMs excel in completing provided input, in other words, generating the most probable
sequence of tokens given the input sequence. Zhang et al. (2019) show the potential of using
these models as an eng-to-end conversational model. The model is capable of generating
grammatically correct and relevant sentences but has difficulties reflecting the user goal or
taking a proactive role. Additionally, to enable the model to discuss a new domain, one
must fine-tune it on the domain-specific data to reflect its specifics.

The concept of instruction-based models was introduced to minimize the data required
for the model adaptation. The pioneers of the instruction-based model family are the later
versions of Generative Pretrained Transformers by OpenAI (2022). The instructions for
the model are provided in the form of natural language prompts, explaining the model what
is its goal and what to reflect while generating the responses. Using the natural language
prompts to explain the model’s task is a few-shot learning approach (Brown et al., 2020).
Besides the highly discussed problems such as model hallucination (Yao et al., 2023),
the related problems include not reflecting parts of the prompts, especially forgetting the
information provided at the beginning of the prompt sequence when the prompt has many
tokens. The prompt decomposition, the introduction of conversational memory, and the
introduction of external knowledge aim to mitigate the mentioned problems. Many tools
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have emerged to streamline the development processing using LLM with Langchain (Chase,
2022). All of these prompt-chaining tools and approaches rely on multiple calls of LLMs,
which results in a significant latency on final response generation.

In this chapter, we propose a novel dialogue architecture that addresses the LLM-
related problems above. The architecture was created as an evolution of hybrid approaches
described in chapter 4. We created a platform called Flowstorm (Pichl et al., 2022) that
uses the proposed dialogue architecture and allows developers to prototype and create new
conversational content with minimal effort rapidly. The platform was successfully used as
a base for the winning version of Alquist during the Alexa Prize Socialbot Grand Challenge
4 and for the Elysai application (Jakimiv et al., 2021).

The main idea of the architecture is a simplified dialogue design process by decomposing
the large dialogue structure into small logical units (called sub-dialogues) as accented in
Pichl et al. (2018) and Konrád et al. (2021). Besides the simple creation and maintenance
of the sub-dialogue as part of the complex conversational application, it allows content
reusability among various use cases without the need for retraining of the corresponding
NLU models. Moreover, each of the sub-dialogue units has its own set of NLU (intent)
models that can be easily combined with the additional NLU models to form a complex
understanding throughout the application. The novelty lies in two major aspects. The first
one is a modular intent recognition that allows a dynamic combination of multiple intent
models based on the sub-dialogue hierarchy. The second one is a built-in out-of-domain
(OOD) detection that handles situations beyond the scope of the designed dialogue. OOD
is crucial in connection to the generative (LLM) models. It allows us to adaptively recognize
the boundaries of the dialogue and trigger a relevant LLM model.

To maintain a reasonable response latency that is critical for the conversational sys-
tem, especially in voice-enabled systems, we focus on models and algorithms that are less
demanding on the computational resources.

Our main goal is to create an architecture that is primarily designed in a way that can
be used to create complex and modular open-domain conversational systems. Thanks to its
modularity, it can also be easily adapted for more narrow-focused, goal-oriented systems.

5.1 Related Work

5.1.1 Conversational Patforms

There are two categories of related conversational platforms: open-source frameworks or
libraries and online platforms. Rasa (Bocklisch et al., 2017) and DeepPavlov (Burtsev et al.,
2018) are the most famous representatives of the framework category. They provide the
developer with a set of programmatic and declarative interfaces for defining and training
natural language understanding (NLU) and dialogue management (DM) models. They
also allow the creation of a pipeline of the components where the developer can create
a sequence of models or components for utterance processing. Both libraries require a
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local installation following a non-negligible effort in integrating it with the rest of the
conversational application.

Alexa Skills Kit (ASK) (Amazon.com, 2015), Dialogflow (Google, 2017), and Voiceflow
(Voiceflow, 2019) are the representatives of the category of the online platforms. ASK
and Dialogflow offer an online application for the definition of NLU models (intents and
slots/entities). ASK introduced Alexa Conversations for dialogue management, allowing
the developer to specify the conversation flow using sample conversations. Dialogflow CX
(part of the Dialogflow providing a new way of working with the conversational agents)
offers a visual view of the conversation agents to see the possible flows of the conversation.
Voiceflow uses a visual dialogue editor as an approach to building a conversational appli-
cation. Dialogue blocks can be connected via transitions to create a flow of blocks where
each block represents a specific functionality, such as keyword matching or API calls.

5.1.2 Intent Recognition and Out of Domain Detection

We described the related work of intent recognition in subsection 2.7.2 in detail. Over-
all, it follows the progress of text classification algorithms that have evolved from simple
approaches using BOW or one-hot representation with classifiers such as SVM or logistic
regression to more complex CNN, RNN, and transformer-based neural networks. Most
recently, the zero- or few-shot learning approaches using LLMs are increasingly popular.

The Out of domain (OOD) detection can be divided into two main streams. The
first stream uses data representing OOD utterances, and the second stream estimates
thresholds or boundaries of in-domain data and treats the rest as OOD. Larson et al.
(2019) show several approaches, including training an intent classifier with an additional
class representing the OOD or finding a threshold of the intent classifier using the OOD
data. Additionally, Zhang et al. (2021) propose learning an adaptive boundary around
in-domain classes to reflect different in-class variances.

5.2 Architecture Description

We design a conversational application as a set of connected dialogue flows. We call each
dialogue flow a sub-dialogue (see subsection 5.2.1). Each sub-dialogue is focused on a small
subset of a domain (e.g., in the movie domain, one sub-dialogue can be focused on a user’s
favorite movie). Each application has at least one sub-dialogue but typically consists of a
large number of sub-dialogues. Let’s denote the sub-dialogue that is triggered when the
application is launched as “main”. The other sub-dialogues are triggered based on the
conversational design and current context. The sub-dialogues can be statically linked as
parts of other sub-dialogues or can be dynamically selected based on the specific selection
logic (Marek, 2023).

Formally, let’s denote an application A and a set of n sub-dialogues S = (S0, S1, . . . , Sn).
The application A is then defined as:

A = (S, Sm),
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where Sm ∈ S is the main sub-dialogue. A sub-dialogue may be directly referenced by one
or many other sub-dialogues which may be denoted as an adjacency matrix In×n:

Ii,j =

{
1 Sj is a sub-dialogue referenced from Si

0 otherwise

When a sub-dialogue Sj is referenced from Si, it means that there is a node (see below)
in the graf structure of Si directly referencing Sj. The other option to include sub-dialogues
in the application is to add them to a set Ssel ⊆ S from which they can be selected using
a selection logic. Please note that the selection logic is not in the scope of this thesis and,
therefore, will not be discussed in detail.

One of the key ideas is the reusability of individual sub-dialogues. The architecture, as
well as the platform itself, allows multiple references to the same sub-dialogues. It results in
an adaptive conversational flow while keeping the application resources easily maintainable.
However, you can launch each sub-dialogue independently and test it without connecting
to the rest of the application. Due to the intent hierarchy as described in subsection 5.3.2,
a different set of global intents may come into play in each situation.

Figure 5.1: Web UI of Flowstorm platform showing the main visual flow editor. The
conversational editor (in the middle) shows a particular sub-dialogue consisting of several
nodes. Additionally, there is a client for instant testing in the right panel and a conversa-
tional log for debugging at the bottom.
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5.2.1 Sub-dialogue

Sub-dialogue, as the main unit forming the conversational application, is a graph structure
consisting of connected nodes representing the flow of the conversation. Formally, it is an
oriented graph defined as follows:

Si = (N , E),

where N is a set of nodes and E is a set of oriented edges. Each node N ∈ N has its
type t. Each node type plays a different role in the conversation. The key node types are
described in the following list. The basic structure and node types are shown in Figure
5.2.

◦ Enter – Entry point of the sub-dialogue. Each sub-dialogue must have exactly one
Enter.

◦ Speech – Speech node contains one or more natural language responses that are
presented to a user. If there are multiple responses, one is randomly selected. It can
also contain slots that are eventually filled with variables based on the context.

◦ Generated Speech – Generated Speech node references an LLM. It contains a
prompt and model parameters. Once reached in the conversational flow, the LLM is
queried with the given prompt, and the generated response is streamed to the output.

◦ User Input – Point in a conversation where the bot waits for the user utterance. It
is typically connected to multiple intent nodes and optionally to action nodes. Each
User Input node has its own underlying intent recognition model trained separately.
It has as many intent classes as there are intent nodes connected to it.

◦ (Global) Intent – Intent node contains examples of the users’ possible utterances,
which serve as training data for the intent recognition model. Each intent represents
a single class in the intent recognition model. There are two types of intent nodes:
contextual Intent and Global Intent. Contextual intents can be recognized only at a
specific point of the conversation—when the conversation flow reaches the User Input
node they are connected to. Global Intents, however, can be recognized at any point
in the conversation.

◦ Function – Function node contains code with a custom logic. The code can contain
arbitrary logic (usually working with attributes — see the attributes subsection). The
function returns the transition to the next dialogue node. It is suitable for branching
the dialogue based on the attribute values, API results, etc.

◦ (Global) Action – Actions represent specific situations in the conversation flow.
There are several predefined situations: Silence, Error and Out of domain. Silence
action is triggered when no speech is recognized. Error action is triggered when the
logic written in the Function nodes fails (connection errors or bad design). Out of
domain action represents the utterance that does not belong to any of the intent
classes. This will be described in detail in the following sections.
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◦ Sub-dialogue – Sub-dialogue node introduces the ability to reference another sub-
dialogue. When the conversation flow reaches this node, it triggers the referenced
sub-dialogue, processing its logic from the Enter node to the Exit.

◦ Exit – Exit node represents the end of the sub-dialogue flow. If the sub-dialogue
is the “main” dialogue, the session is ended. If it is a lower-level sub-dialogue, the
conversation flow jumps to the parent sub-dialogue (i.e., the one where the current
sub-dialogue was referenced).

Additionally, each subdialogue has the following properties that can be referenced from
the nodes.

Init code – Each sub-dialogue has a declarative code part that typically serves as a
place to define attributes (see below) and methods that can be called from the function
nodes.

Attributes – There are four scopes of the attributes that can be defined in the Init
code. The attribute stores values that can be used to modify the conversation flow, or they
can be presented directly as part of a response. Each attribute must have its default value
which is used to initialize the attribute based on its scope.

1. Turn – the value is reset to default at the beginning of each turn.

2. Session – the value is reset to default at the beginning of each session.

3. User – the default value is used for each new user. Once the value of a user attribute
is set, it is valid for all sessions of the user.

4. Community – the default value is used for each community namespace. Once the
value of a community attribute is set, it is valid for all users using the same community
namespace.

Figure 5.3 shows the scenario when a sub-dialogue B is directly referenced from a sub-
dialogue A. Once the flow reaches the Intent 2 node, the next edge enters the sub-dialogue
B, starting with the Enter node. Analogically, after exiting through the Exit node, the
flow continues with the outgoing edge from Subdialogue node in sub-dialogue A.

For the intent recognition described in the following sections, it is important to in-
troduce the Dialogue Stack mechanism when dealing with multiple sub-dialogues. The
Dialogue Stack is initialized with a reference to the main sub-dialogue once the conversa-
tion is started. When another sub-dialogue is entered, its reference is pushed to the top of
the stack. Analogically, when the sub-dialogue is exited, the top reference from the stack
is removed.

5.3 Natural Language Understanding

This thesis focuses on Intent Recognition as the critical part of Natural Language Under-
standing. The novel Intent recognition approach is based on our proposed conversational
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Figure 5.2: Nodes connected to the sub-dialogue structure. The names of the node types
are shown in the corresponding boxes in the picture.

system architecture. The essential part of the proposed approach is an out-of-domain de-
tection. Additionally, we briefly mention the Entity Recognition task as we apply entity
masking as a prerequisite for Intent Recognition.

5.3.1 Entity Recognition and Masking

We use a combination of state-of-the-art methods with simpler algorithms to achieve the
best accuracy while maintaining reasonable training and inference times. These methods
include BERT (Devlin et al., 2019) model (with a token classification head), Bi-LSTM-
CRF architecture (Huang et al., 2015) and a Regex-based tool Duckling1 (used for entities
with specific structure which can be easily described using regular expressions—date, time,
numbers, URLs, amount of money, etc.).

We created a custom annotation interface focusing on dataset creation and augmenta-
tion rather than on the annotation of existing samples. The data format consists of the
context sentence, i.e., the sentence where the entity may occur and the actual entity value.
For example, the contextual sentence is My favorite movie is {movie}, and the entity
values for type movie are Matrix, Gladiator, Forest Gump. Before training the model,

1https://github.com/facebook/duckling
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Figure 5.3: Direct referencing a sub-dialogue from another one.

the examples are expanded in a way that each contextual sentence is used with each en-
tity value, e.g., My favorite movie is Matrix, My favorite movie is Gladiator, etc.
This may lead to a poor dataset as the samples differ only in the entity, and the rest of the
sentence is the same. Therefore, we apply a query rewrite (Ye et al., 2023) of the original
sentence. Additionally, we may specify the contextual sentence directly with the entity
value using the following form: My favorite movie is [Matrix]{movie}.

The recognized entities are masked out in the user utterance prior to the intent recog-
nition phase. This step allows the intent recognition model to focus only on the types
of entities rather than the actual values. The intent recognition module receives, for ex-
ample, the sentence My favorite movie is {movie} instead of My favorite movie is

Matrix. Only the entity types included in the intent examples are masked out.

5.3.2 Hierarchical Intent Recognition

The Hierarchical Intent Recognition is a novel approach highly connected to our modular
architecture. We introduced the concept of sub-dialogues, each consisting of local and
global intents. Each sub-dialogue may contain multiple global intents and multiple user
input nodes with various numbers of local intents connected to it. For a sub-dialogue Sd,
let the

Gd = (g1, . . . , gn)

94



5.3. Natural Language Understanding

be a set of global intents of the sub-dialogue S and let the

Ud = (ud,1, . . . , ud,m)

be the set of User Input nodes where each node ud,i has its own set of local intents

Ld,i = (ld,i1 , . . . , ld,iki
).

There is one model trained for each ud,i ∈ Ud that classifies the user utterance into |Ld,i|
classes. Additionally, one extra model is trained for global intents with |Gd| classes.

5.3.3 Global Intents Hierarchy

The intent recognition step is triggered whenever a user reaches the User Input node, i.e.,
during each conversational turn. Different intent classes are considered during each turn,
and the selection depends on two factors: the set of contextual intents connected to the
current User Input node and sub-dialogues referenced in the dialogue stack.

Assume the following situation. Dialogue stack DS = (Sn, Sn−1, . . . , S1), where Sn is on
the top of the stack and S1 is the main sub-dialogue. Then, the conversation flow reached
the User Input node un,k in the sub-dialogue Sn. Given the dialogue stack and the user
input node, the relevant intent classes for this situation are the following:

I(DS, un,k) = Ln,k ∪
n⋃

i=1

Gi

In other words, we take all intent classes relevant to the current user input node and
global intent classes from all sub/dialogue from the dialogue stack. The intuition behind
that is the following. The contextual (local) intents are relevant only for a specific point in
the conversation, e.g., yes or no for a question asked in the previous turn. However, global
intents are relevant for each point in the conversation. Moreover, the inherited global
intents from dialogues on the dialogue stack reflect the global capabilities of the entire
application. For example, let’s assume a conversation about sports. It contains a main
dialogue with several global intents, e.g., “help” and “sports rules”. This sub-dialogue
also references another sub-dialogue focused on football. It contains global intent about
“football rules”. When this sub-dialogue is reached through the main, the dialogue stack
contains references to both of these sub-dialogues. Therefore, both “help”, “sports rules”
and “football rules” are active global intents. Since it is likely for sports rules and football
rules to have similar training examples, football rules are prioritized since they are closer
to the top of the dialogue stack, which is the most relevant for the current scope.

5.3.4 Out of Domain Detection

During each dialogue turn, the utterance is classified into one of the intent classes as
described above. However, the utterance does not have to correspond to either of the

95



5. Modular Dialogue Architecture With Hierarchical Intent
Recognition

Figure 5.4: Typical flow control when a Generated Speech is triggered after the out-of-
domain is detected.

classes, i.e., it is an Out of domain (OOD) input. In the context of the proposed dialogue
architecture, the utterance is considered to be OOD if none of the active local and global
intents classes are relevant. In other words, the utterance may be from the same topical
domain, and it is also considered OOD if a suitable intent class does not exist. This
approach is useful to be used with the combination of generative LLMs. The dialogue
design is then focused only on the desired situations, and the rest is handled using LLM.

We design the actual detection as part of our intent recognition approach. Therefore,
the relevant intent classes for the given dialogue stack and user input nodes are extended
with an additional OOD class:

I(DS, un,k) = Ln,k ∪
n⋃

i=1

Gi ∪ {IOOD}

From the perspective of the dialogue design procedure, it is important for the detection
approach not to require additional training samples for the OOD class, and we rely purely
on the in-domain samples.

When the OOD is recognized, the dialogue flow continues with a local OOD action (if
connected to the current User Input node) or with a global OOD action. The flow snippet,
when the local action is used, is shown in Figure 5.4.

5.3.5 Monolithical Single Model with Masking

To set a baseline for hierarchical intent recognition, we start with a single model per appli-
cation. The application consists of multiple sub-dialogues. Each sub-dialogue has its own
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set of global intents and user input nodes with corresponding local intents. However, only a
subset of all intent classes are relevant in each dialogue turn, as described earlier. Although
there is a finite number of user input nodes and possible dialogue stack combinations given
the application, training a separate model per combination would result in an extremely
large number of models. Therefore, we need to apply a masking mechanism to dynamically
turn off the intents that are not relevant to the current state of the conversation.

Given the application and set of sub-dialogues, A = (S, Sm),S = (S0, S1, . . . , Sn), Sm ∈
S and global intents Gi and local intents Li,j per each sub-dialogue Si. The set of all intent
classes is the following:

I(A) =
n⋃

i=0

Gi ∪ ⋃
Li,j∈ui,j ,ui,j∈Ui

Li,j

 ∪ {IOOD}

Then the masked intents are:

I(A) \ I(DS, un,k) =
n⋃

i=0

Gi ∪ ⋃
Li,j∈ui,j ,ui,j∈Ui

Li,j

 \
Ln,k ∪

⋃
Gj∈Sj ,Sj∈DS

Gj



Figure 5.5: Single model intent recognition using a combination of all global and local
intent per application plus the OOD class. Blue nodes represent the local intents, dark
green nodes are global intents from the sub-dialogue on top of the stack, light green are
the remaining global intents, and red is the OOD class.

The decision schema with intent examples is shown in Figure 5.5. This approach does
not require an additional classification combination since we classify all relevant classes
using a single model. However, we need to train a single model per application, which
results in the following inefficiencies from the dialogue architecture point of view:

1. Classifying into classes that are apriori irrelevant and masked out
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2. User inputs with the same (or similar) class sets may be used in different sub-
dialogues. The model does not have the information on which one of them is relevant
for the current turn.

3. Different models and, therefore, different results for a classification in particular sub-
dialogues used in different applications.

5.3.6 Try-Catch Mechanism

We propose the try-catch mechanism to address the issues mentioned in the previous
sections. The main goal is to create a model or multiple models per sub-dialogue that can
then be combined with other models to cover all relevant classes in the current turn. This
approach is based on intuition about human reasoning during a conversation. When we
evaluate an utterance of our communication partner, we typically expect the utterance to
be relevant to the previous context of the conversation. For example, when talking about
weather and we ask “What is the weather outside”, we probably expect the response to
be something like “It is sunny” or “It is raining outside”. However, the response can be
“Why are you asking?” or even “Hm, I am hungry”. Even though the last response is not
probable, given the previous context, it still may occur. When categorizing the utterance
of our communication partner, we tend to prioritize the “classes” that are closely related to
the previous context. This fact is related to the adjacency pairs discussed in subsection 4.4.3
and to the topic relevancy.

The approach uses a bottom-up strategy. When we start at the local intent level and
when no class is matched, we continue with the global intent classes per each sub-dialogue
on the dialogue stack. In this scenario, there is an individual model mun,k

for each user
input node un,k, where Sn is the sub-dialogue on the top of the dialogue stac DS and k is
the index of user input node in the sub-dialogue. Additionally, model mGi

classifies into
the global intent classes Gi.

The OOD class is returned only if none of the classification layers returns an in-domain
class. The diagram analogical to the previous approach is shown in Figure 5.6.

5.3.7 Routing Mechanism

The routing, also used in our system by Konrád et al. (2021) described in chapter 4,
mechanism approach preserves the usage of individual models per user input node and
per global intents in each sub-dialogue. Additionally, we propose to use one high-level
model that decides which of the lower-level models is used for the final classification.
The important requirement for the high-level model is to be generic enough and does not
require retraining when the underlying models change. Therefore, we selected a similarity
function that can be used to compute the similarity between the input and variable set of
representatives. The classification is then two-step. First, we use the similarity function to
select a layer and its corresponding lower-level model. Additionally, we take the selected
lower-level model to classify the final intent class.
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Algorithm 5.1 Try-Catch Intent Recognition Algorithm

function classify intent(utterance, un,k)
model← get model(un,k)
intent class← classify(model, utterance)
if is ood(intent class) then

return classify global(utterance)
else

return intent class
end if

end function
function classify global(utterance)

DS ← get dialogue stack
for Si in DS do

model← global model(Si)
intent class← classify(model, utterance)
if not is ood(intent class) then

return intent class
end if

end for
return OOD

end function

Given the dialogue stack DS of size n, the high-level model needs to classify into
n + 1 layers, i.e., one layer for each intent set Ln,k,G0, . . . ,Gn. Then we use one of the
corresponding models mun,k

,mG0 , . . . ,mGn . The high-level classifications use the intent
examples from the intent classes from all underlying layers. Each example is then embedded
into a vector space (see section 5.5). We calculate a centroids cLn,k

, cG0 , . . . , cGn for each
layer by averaging the vector representations of intent samples corresponding to each layer.
We take all training samples of all corresponding intent classes and create their vector
representations ej ∈ Rm, where m is the dimension of the embedding vector and calculate
the centroids:

cLn,k
=

1

n

n∑
j=1

ej, where n = |Ln,k|

cGi
=

1

n

n∑
i=j

ei, where n = |Gi|,∀Gi ∈ Si, Si ∈ DS

During the classification phase, the similarity between the input utterance and each
centroid is estimated. Based on the most similar centroid, the lower-level model is selected
and used for the classification.
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Figure 5.6: Hierarchical try-catch approach starting with a local intent model. Each purple
diamond is a different model corresponding to a given layer.

5.4 Datasets

We prepared our in-house dataset for the experiments with the hierarchical intent recog-
nition approaches described earlier. We identified the need for a custom dataset while
analyzing the publicly available intent recognition datasets that also include out-of-domain
samples. The reasons are summarized in the subsection 5.4.2. Additionally, we needed to
create a dataset that did not contain proprietary user input queries collected during the
Amazon Alexa Prize Socialbot Grand Challenge 4. The overall goal of our dataset is to
make it challenging for our use-case of hierarchical intent recognition. As you can see in
Table 4.16, the F1 scores on the CLINC150 dataset are in most cases above 95% indicating
that the dataset is not challenging enough thus not reflecting the real-world scenarios.
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Figure 5.7: Routing mechanism schema

5.4.1 Data Collection

Data collection of the dataset was performed as a multiple-step process leveraging content
created in the Flowstorm platform (Pichl et al., 2022) using its web UI and additional data
collection as part of the Wizard-of-Oz Kelley (1984) experiment:

◦ We explored the content created using the Flowstorm platform. Each content con-
tains intent examples assigned directly to the corresponding intent classes. We used
content created for the Elysai application (Jakimiv et al., 2021) and additional chit-
chat-oriented content. We filter out duplicate intent classes and classes containing
less than ten examples.

◦ We performed the Wizard-of-Oz (Kelley, 1984) experiment with 15 participants. Par-
ticipants were asked to answer all collected questions. We collect all given answers
(like “I am going shopping” or “I have no idea”). We encourage the participants to
provide four types of answers: (1) related to the question, (2) related to the given
topic but not to the question, (3) related to all covered topics, and (4) not related to
the question or covered topics—Out-of-Domain. Please note that this process is the
only source of OOD examples as the design process in Flowstorm does not require
explicit OOD specification.

◦ We semi-automatically cluster each type of provided answers—grouping by semantic
similarity (using cosine similarity) and then manually stabilizing data

◦ Lastly, we shuffle and divide the examples into a train, valid, and test split in a ratio
of 6:2:2.
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Despite the fact that the hierarchical dialogue may have an arbitrary number of layers,
we created the dataset to have three layers: local intents, global intents and OOD. Global
intents and OOD is always specific for the given set of local intents.

Since the data collected comes from the Flowstorm conversation and the dataset reflects
the hierarchical intent structure, we call it the Flowstorm Hierarchical Intent (FHI) dataset.

5.4.2 Datasets Comparison

As outlined at the beginning of this section, we struggled with the usage of the existing
dataset for the purpose of testing the proposed novel hierarchical intent architecture. Al-
though we showed preliminary hierarchical intent recognition experiments and results in
the final part of the chapter 4 on the proprietary ALQUIST 4.0 (Konrád et al., 2021)
and artificially augmented CLICNC150 (Larson et al., 2019) datasets, we created a novel
dataset suitable for hierarchical intent recognition task focus on multi-level hierarchy and
OOD detection.

One of the strongest points of our dataset is the context-aware OOD approach. In
contrast, the dataset proposed by Larson et al. (2019) and Gangal et al. (2020) contains
only OOD examples that are not specific to the given topic. On the other hand, the dataset
by Arora et al. (2020) contains OOD examples specific to each domain, but our dataset is
superior regarding the number of examples and granularity of topics, making our dataset
more challenging. Moreover, all of the mentioned datasets have the intents on the same
level, which does not fit into the hierarchical scenario.

We created a dataset containing 11,807 intent samples in total. Compared to the other
datasets, CLINC150 has 23,700 samples, ROSTD has 47,590 in total for newly created
out-of-domain and previously created in-domain samples, and HINT3 has 5,242 samples.
To reflect the real-world scenario, we tried to keep the sample per intent class on a minimal
size, which is 52 on average. Additional statistics are shown in Table 5.1.

Table 5.1: Comparison of our dataset with previously proposed OOD datasets. Decision
points correspond to the user input nodes in our dialogue architecture. For the other
datasets, the decision point corresponds to a single domain.

Dataset
Decision
points

Context-aware
OOD

# Intents per
decision point

# Intents
total

# Topics
Hierarchical
structure

FHI (ours) 49 Yes Avg. 18 227 12 Yes
CLINC150 10 No Avg. 15 150 10 Yes

ROSTD 3 No Avg. 4 12 3 No
HINT3 3 No Avg. 36 108 3 No
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5.5 Experiments

In this section, we run the experiments on the three proposed hierarchical intent recog-
nition approaches. We utilize the combination of pre-trained language models for text
embeddings together with a classification model. We apply a threshold mechanism with
minor adjustments for each proposed method for the OOD classification. Generally, we set
the threshold for each intent class individually. Let’s define F (u) as an intent classification
function of user utterance u, intent class Ii ∈ L ∪ G, and a probability pmethod(u, Ii) of u
belonging to the class Ii using one of the method (single model, try-catch, routing). Then:

F (u) =

{
Ii if ∃Ii ∈ L ∪ G : pmethod(u, Ii) ≥ Ti

OOD otherwise

For the single model, pmethod(u, Ii) is estimated as a softmax probability of the cor-
responding class. For the try-catch approach, we estimate the probability and compare
it with the threshold at each level individually. Finally, for the routing mechanism, we
compute the similarity between the utterance and all the centroids.

5.5.1 Metrics

To find a significant difference in the performance of the OOD detection, we used standard
evaluation metrics (Larson et al., 2019; Tan et al., 2019b): Accuracy, Recall, and False
rejection rate (FRR). More specifically, for our three-layer structure, we define Local In-
domain Accuracy, Global In-domain Accuracy, Out-of-domain recall, Local False Rejection
Rate, and Global False Rejection Rate. The suggested division of metrics can be easily
extended to more layers.

Table 5.2: Possible combination of predicted and true intents used in the 2-layer structure

Predicted intent
Local
intent

Global
Intent

Out-of-Domain

Local Intent L-TP L-FP L-OOD
True intent Global Intent G-FP G-TP G-OOD

Out-of-Domain OOD-FP OOD-FP OOD-TP

Out-of-domain Recall is computed as:

OOD-TP

OOD-TP + OOD-FP

Local False Rejection Rate is defined as :

L-FP + L-OOD

L-TP + L-FP + L-OOD
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and finally Global Ralse Rejection Rate as:

G-FP + G-OOD

G-TP + G-FP + G-OOD

Similar to Tan et al. (2019b), we used the Local False Rejection Rate and Global False
Rejection Rate as critical metrics suitable for coherent conversation (Konrád et al., 2021).
In general, both metrics reflect what portion of the In-domain examples system misclassifies
as the Out-of-domain class. The low false rejection rate shows the desired performance
for the user of conversational agent because, as Candello and Pinhanez (2018) shown,
misclassification of the In-domain class into the Out-of-domain class is more problematic
to coherency.

5.5.2 Pretrained Language Models

Vector representation of a sentence shows promising results in different text classification
tasks (Cer et al., 2018). As shown by Reimers and Gurevych (2019), the possibility to
precompute sentence embedding beforehand is crucial in real-world systems, where we
need to decrease the response time to a minimum. After following this recommendation,
we use the following vector representations of a sentence:

◦ Universal Sentence Encoder (USE) Cer et al. (2018)

◦ ParaphraseBERT (Ko and Choi, 2020) implemented by Reimers and Gurevych (2019)

◦ MPNet (Song et al., 2020) implemented by Reimers and Gurevych (2019)

◦ MiniLM (Wang et al., 2020)

◦ DistilBert (Sanh et al., 2019)

◦ Albert (Lan et al., 2019)

◦ BERT (Devlin et al., 2019)

All algorithms show promising results in sentence similarity tasks (Reimers and Gurevych,
2019; Cer et al., 2018) and allow precompute vector representation of sentences beforehand.
For USE, we used two different versions, one based on Deep average networks (DAN)2 and
the other trained with a Transformer encoder (TRAN)3. ParaphraseBERT was used in
version with 3 encoders (ParaphraseBERT-Small)4 and 12 encoders (ParaphraseBERT-
Big)5

2https://tfhub.dev/google/universal-sentence-encoder/4
3https://tfhub.dev/google/universal-sentence-encoder-large/5
4https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2
5https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
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5.5.3 Classification Model

In addition to the embedding representation, we experiment with several classification
models. We did the experiments with the models on all of the mentioned hierarchical
approaches with one exception. The routing mechanism uses cosine similarity in all cases
on the top level, where it computes the similarity between the input utterance and all of
the centroids representing individual levels. The lower uses one of the mentioned models:

◦ 2-layer Neural Network – feed-forward network, both hidden layers have the size of
128, ReLu activation

◦ 1-layer Neural Network – feed-forward network, hidden layer have the size of 128,
ReLu activation

◦ Random Forest – 128 estimators, Gini impurity criterion

◦ Logistic Regression – L2 penalty, inverse regularization strength 1

◦ Cosine Similarity

5.5.4 Results

We provide results of different embeddings in all of the three proposed approaches. We
measure the OOD recall, false rejection rate of local intents, and false rejection rate of global
intents. In other words, the embedding selection is focused on the OOD performance, and
the results are shown in Tables 5.3, 5.4, and 5.5. The inference time are measured on AMD
EPYC 7V12 CPU. The in-domain classification accuracy is shown in the other half of this
subsection.

Table 5.3: Results of different embeddings used in Monolithical Single Model with Masking
on FHI dataset.

OOD Recall ↑ Local FRR ↓ Global FRR ↓ Inference time ↓

USE-DAN 59.0 7.8 9.2 0.75ms
USE-TRAN 61.4 9.5 9.7 2.8ms
MPNET 63.8 9.4 7.1 10ms
DistilRoberta 62.2 8.6 11.3 5ms
MiniLM-L12 58.9 9.9 13.8 4.2ms
MiniLM-L6 57.7 10.2 14.2 1.6ms
qa-distilbert 59.1 10.4 14.4 5.2ms
par. MPNET 56.3 9.6 12.5 11ms
par. albert-small 55.8 8.9 15.2 21ms
par. MiniLM-L12 56.2 11.0 16.1 3.2ms
par. MiniLM-L3 59.2 10.8 12.7 1.4ms
BERT 47.9 9.6 22.1 32ms
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Table 5.4: Results of different embeddings used in Try-Catch Mechanism on FHI dataset.

OOD Recall ↑ Local FRR ↓ Global FRR ↓ Inference time ↓

USE-DAN 72.5 7.7 12.4 0.75ms
USE-TRAN 75.4 8.9 13.1 2.8ms
MPNET 75.3 10.5 11.3 10ms
DistilRoberta 70.2 8.4 15.6 5ms
MiniLM-L12 69.2 9.2 16.4 4.2ms
MiniLM-L6 67.0 7.7 17.1 1.6ms
qa-distilbert 72.5 8.5 14.5 5.2ms
par. MPNET 71.7 10.2 13.9 11ms
par. albert-small 64.6 8.6 14.8 21ms
par. MiniLM-L12 64.7 10.3 19.4 3.2ms
par. MiniLM-L3 72.3 10.4 14.7 1.4ms
BERT 51.2 9.9 23.5 32ms

Table 5.5: Results of different embeddings used in Routing Mechanism on FHI dataset.

OOD Recall ↑ Local FRR ↓ Global FRR ↓ Inference time ↓

USE-DAN 74.7 7.3 7.1 0.75ms
USE-TRAN 77.8 8.8 8.4 2.8ms
MPNET 78.3 8.4 5.7 10ms
DistilRoberta 71.1 7.7 9.6 5ms
MiniLM-L12 73.6 8.7 11.3 4.2ms
MiniLM-L6 71.9 7.9 12.8 1.6ms
qa-distilbert 74.8 8.3 11.3 5.2ms
par. MPNET 72.7 8.2 9.9 11ms
par. albert-small 68.4 7.7 13.2 21ms
par. MiniLM-L12 68.8 9.7 15.2 3.2ms
par. MiniLM-L3 73.4 9.7 9.1 1.4ms
BERT 51.9 8.7 21 32ms

Furthermore, we show the results of the local and global intent accuracies given the
embedding and classifier combination in the Tables 5.3, 5.4, and 5.5. These results represent
the ability of the model to select the correct intent layer and classify the input utterance
into a corresponding class in the layer.

The table Table 5.9 shows the best results of each of the approaches. We can see
that the best-performing approach is the routing mechanism, which uses the high-level
decision using the cosine similarity and the low-level classification using logistic regression.
The intuition behind the low performance of the try-catch mechanism is that it cumulates
the error as it passes the utterance to the other levels. On the other hand, the routing
mechanism performs well thanks to the intuitive usage of the threshold in combination
with the cosine similarity on the higher level.
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Table 5.6: Comparison of results on Monolithical Single Model with Masking using different
embeddings (rows) with different similarities (columns): 2-layer neural network, 1-layer
neural network, random forest, logistic regression, and cosine similarity. The first value
represents local intent accuracy and the second value represents global intent accuracy.

2-layer NN 1-layer NN RF LR CS

USE-DAN 83.4 / 84 82.6 / 82.5 84.5 / 82.8 87.9 / 85 82.3 / 79.5
USE-TRAN 81.4 / 83 79.8 / 83.4 82.4 / 83.5 81.4 / 84.6 83.1 / 84.6

MPNET 76.4 / 71.2 73.7 / 62.9 82.6 / 84.3 82.7 / 86.9 82.5 / 84.9
DistilRoberta 75.8 / 67.1 74.4 / 58.1 81.4 / 83.8 79.9 / 84.8 79 / 84.8
MiniLM-L12 71.3 / 52.1 71.5 / 49.4 82 / 82.5 81.9 / 79.7 82.5 / 83.2
MiniLM-L6 70.1 / 48.7 72.9 / 48.2 83.2 / 79.4 79.2 / 78.2 81.4 / 78.2
qa-distilbert 73.5 / 66.8 71.4 / 54.9 81.6 / 82.6 77.8 / 81.5 80.8 / 81.5

par. MPNET 78.7 / 71.6 78.3 / 60.8 85.9 / 81.9 83 / 82.4 85.9 / 81.2
par. albert-small 78.6 / 72.3 77 / 67.4 84.1 / 80.1 82.6 / 78.2 84.4 / 80.8
par. MiniLM-L12 75.6 / 58.7 75.8 / 56.5 83.2 / 77.5 80.2 / 75.5 83 / 75.5
par. MiniLM-L3 71.8 / 50.5 69.9 / 50.4 80.4 / 82.2 78.3 / 75.2 79.8 / 82.5

BERT 72.8 / 53.5 71.9 / 40.5 83.5 / 70.3 78.9 / 64.2 83.5 / 70.9

Table 5.7: Comparison of results on Try-Catch Mechanism using different embeddings
(rows) with different similarities (columns): 2-layer neural network, 1-layer neural network,
random forest, logistic regression, and cosine similarity. The first value represents local
intent accuracy and the second value represents global intent accuracy.

2-layer NN 1-layer NN RF LR CS

USE-DAN 80.5 / 55.9 77.7 / 54.6 78.1 / 55.3 81.7 / 59.5 78.2 / 51.4
USE-TRAN 78.2 / 56.4 77.8 / 55.7 79.3 / 56 78.2 / 57.7 76 / 57.7

MPNET 71 / 44.1 68.6 / 35.1 78 / 58.6 77.6 / 60.8 75.6 / 60.8
DistilRoberta 71.9 / 40.3 67.6 / 30.9 77.5 / 58.3 75.3 / 58.2 76.8 / 58.2
MiniLM-L12 68.1 / 25.3 64.6 / 21.6 76.1 / 56.2 74 / 52.5 77.5 / 56.8
MiniLM-L6 66.9 / 21.9 65.1 / 21.2 76.4 / 52.8 75.6 / 50 76.8 / 50
qa-distilbert 70.6 / 39.2 68.4 / 28.3 77.7 / 55.5 74.5 / 53.9 77.3 / 53.9

par. MPNET 73.3 / 45.4 73.5 / 34.3 81.4 / 54.7 79.2 / 55 80.5 / 53.1
par. albert-small 73.1 / 45.1 72.5 / 39.1 81.4 / 52.2 77.9 / 49.6 79.5 / 53.6
par. MiniLM-L12 71.4 / 30.8 68.9 / 28.9 78.1 / 49.5 75.5 / 49.6 78.3 / 49.6
par. MiniLM-L3 67.1 / 23.3 66.8 / 23.6 75.9 / 55.2 76.3 / 48.1 77.2 / 56.1

BERT 69.5 / 27.4 70.2 / 22.1 79.6 / 42.9 75.9 / 38.1 79.6 / 44.5
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Table 5.8: Comparison of results on Routing Mechanism using different embeddings (rows)
with different similarities (columns): 2-layer neural network, 1-layer neural network, ran-
dom forest, logistic regression, and cosine similarity. The first value represents local intent
accuracy and the second value represents global intent accuracy.

2-layer NN 1-layer NN RF LR CS

USE-DAN 86.7 / 89.8 86.1 / 88.4 86.5 / 88.3 88.1 / 90 87 / 85.4
USE-TRAN 86.2 / 89.1 84.8 / 89.2 85.9 / 89.4 86.2 / 90.1 85.1 / 90.1

MPNET 79.9 / 77.3 77.1 / 68.6 85 / 92.7 84.4 / 92.8 84.6 / 92.8
DistilRoberta 78.3 / 73.3 75.7 / 63.8 84.9 / 89.9 83.8 / 90.4 83.7 / 90.4
MiniLM-L12 74.6 / 58.3 73.5 / 55.5 84.9 / 88.3 83.1 / 85.8 84.2 / 88.7
MiniLM-L6 75 / 54.4 74 / 54 84.9 / 85.5 83.2 / 84.1 85.2 / 84.1
qa-distilbert 77.7 / 72.5 74.7 / 60.6 84.8 / 88.5 81.5 / 87.2 84.6 / 87.2

par. MPNET 81.9 / 77.2 80 / 66.5 87.6 / 87.3 86.3 / 88.5 88.1 / 87
par. albert-small 81.1 / 78.4 78.8 / 73.1 87.5 / 86.3 86 / 83.8 87 / 86.8
par. MiniLM-L12 77.8 / 64.3 77.2 / 62 85.5 / 83.3 84.3 / 81.7 86.2 / 81.7
par. MiniLM-L3 74.9 / 56.4 74.8 / 56.2 84.3 / 87.6 83.1 / 81.1 84.4 / 87.9

BERT 78 / 59 77 / 45.9 86.5 / 75.7 82.8 / 69.7 86.5 / 76.3

Table 5.9: Summary of OOD detection methods and their performance metrics. We se-
lected the best models based on the local intent accuracy.

Method Threshold Local Acc Global Acc OOD Recall

Single model Max Softmax Prob. 87.9 85.0 59.0
Try-catch Max Softmax Prob. 81.7 59.5 72.5
Routing Avg Cos. Sim. 88.1 90.0 74.7
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5.6 Conclusion and Main Contributions

In this chapter, we proposed a novel hybrid conversation system architecture. Inspired by
the series of the architecture used in Alexa Prize Socialbot Grand Challenge, we created
a modular architecture capable of running the conversation in real-time while achieving
high performance in the NLU part. The main idea of the architecture is the decomposition
of the entire conversational application into smaller units called sub-dialogues. The sub-
dialogue may be arbitrarily nested into each other by a static design or using a dynamic
decision logic.

This concept is also part of our Flowstorm platform (Pichl et al., 2022), allowing the
dialogue designer to easily create various sub-dialogue structures using a visual flow editor.
The sub-dialogues are created using different node types and edges defining the flow. The
built-in Out of domain mechanism allows the designers to handle the OOD explicitly or by
implicit logic. The platform was used as a foundation of the winning socialbot Alquist in
the Alexa Prize Socialbot Grand Challenge 4. Also, a popular conversational application
Elysai (Jakimiv et al., 2021) was created using our platform.

The proposed architecture based on the sub-dialogues introduces a novel concept of
hierarchical intent recognition with Out of domain detection. The hierarchical approach
is proposed and evaluated in three modifications: A single Model with Masking, a Try-
Catch Mechanism, and a Routing Mechanism. We evaluated the Routing Mechanism to
outperform the other two and promoted it as the main approach used on the platform.

Overall, the proposed architecture with a hierarchical intent recognition and Out of
domain detection allows variability in dialogue design. The created dialogue structure can
be easily combined and allows rapid development and fast runtime. The OOD detection
is an important step in leveraging powerful Large Language Models for handling various
utterances.
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Chapter 6

Open-Domain Understanding Using
Pragramtic Level of Conversation

In the previous chapter, we focused on the part of the Natural Language Understand-
ing (NLU), which is tightly connected to the discussed domain. The decomposition into
multiple layers represents the intents’ relevancy and probability of occurrence. Local in-
tents are typically direct answers to the previous question or reactions to the previous
input. Global intents, on the other hand, are typically relevant to the discussed domain
but may interrupt the expected flow. Finally, Out of domain (OOD) represents the utter-
ances that, given the context, are irrelevant or simply not covered by the actual dialogue
design. The proposed approach of OOD detection is suitable for handling using a sin-
gle method such as a LLM capable of handling various domains as outlined in section 4.5.
However, the variability of the responses that may be classified as OOD is high, so dividing
them into multiple categories might be beneficial. Each category may then be processed
by a different logic, a model fine-tuned on different data, or the category class may be used
as an input for such a model.

One of the critical properties of the mentioned categories is that they can be used across
various domains. This leads to linguistic categorization, such as dialogue acts. Dialogue
acts represent various categories that may be further used to determine the suiting dialogue
act of the response either by a set of rules or by instructing the model. Additionally, the
dialogue acts can be used to identify different segments of a single utterance.

In this chapter, we would like to propose a pragmatic level of NLU based on the dialogue
acts detection in conversational systems. The main goal is to establish a topic- and use-
case-independent set of aspects of the natural language that can be further used in the
dialogue manager or other parts of the system. We propose an approach to dialogue acts
detection focusing on two major aspects: contextual detection and segment-level detection.
Unlike single-utterance detection, contextual detection improves accuracy as the dialogue
acts often depend on the previous context. Segment-level detection is beneficial for complex
utterances where each segment may be handled differently or even decided not to be
handled at all.
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The segmentation and the actual dialogue act recognition may be executed as two
separate steps. However, we propose a single model recognizing the multiple dialogue
acts in a single utterance, resulting in a segmented utterance. Together with the intent
recognition and OOD handling using LLMs, it brings better variability to the conversations,
improving the user experience. Additionally, we introduce the concept of the core segment,
indicating the most relevant segment for further conversation.

6.1 Related Work

Dialogue Act (DA) recognition, associating semantic labels with utterances in a conver-
sation, has been addressed through various approaches in recent research. The research
has been done using several datasets with Switchboard (Godfrey et al., 1992) as the most
common one. The task is typically treated as an utterance classification task. Various
neural networks have been utilized, specifically a Recurrent neural network (RNN) archi-
tecture leveraging bidirectional Long Short-Term Memory (LSTM) units forms the base
model, while a Conditional Random Field (CRF) layer serves as the top layer to classify
utterances into their respective dialogue acts (Chen et al., 2018). With the introduction of
transformer architecture (Vaswani et al., 2017), the popular architectures such as BERT
(Devlin et al., 2019), Albert (Lan et al., 2019) or DistilBERT (Sanh et al., 2019) have been
used.

Another research by Wan et al. (2018) has explored DA classification from a question-
answering perspective, proposing an enhanced dynamic memory network with a hierar-
chical pyramidal utterance encoder. Along with adversarial training, they try to tackle
limitations such as handcrafted feature reliance or using traditional methods with ad-
versarial examples. Besides Switchboard dialogue act corpus, they use MapTask corpus
(Thompson et al., 1993) for the evaluations.

He et al. (2021) proposed integrating speaker turn changes when modeling dialogue acts
to differentiate from the written text. These models incorporate conversation-invariant
speaker turn embeddings, enhancing the capture of dialogue semantics while considering
different speaker turns. Evaluation is done on multiple benchmark datasets, including the
Switchboard corpus.

Moreover, leveraging Sequence–to–Sequence (Seq2Seq) approaches, inspired by Neural
Machine Translation (NMT), has been proposed by Colombo et al. (2020) to improve
the modeling of tag sequentiality in DA classification. A Seq2Seq model tailored for DA
classification, consisting of a hierarchical encoder, guided attention mechanism, and beam
search, was proposed, and the authors show the comparison with traditional classification
approaches.
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6.2 Proposed Method

We propose a contextual dialogue act detection model focused on open-domain conversa-
tions. The model is intended to be used on both user utterances and bot responses. The
bot responses annotated with dialogue acts may be then used along with user utterances
annotations to control the responses of generative models (Marek, 2023). Additionally, we
use the user utterance annotations directly as a signal that can be used to control logic
created as part of the dialogue design process in the Flowstorm platform. The typical
situation is illustrated in Figure 6.1 and shows the OOD Global action followed by a few
additional actions.

Figure 6.1: Action nodes following the global action Out of domain in Flowstorm platform
corresponding to the selected dialogue classes (Initiative statement, Open-ended request,
Multiple-choice request, Proposal).

In this scenario, an out-of-domain utterance is processed with a different branch based
on the listed dialogue act classes. Please note that for illustration purposes, not all classes
are shown. The Dialogue Act class corresponds to the whole utterance if the utterance is
not segmented. Otherwise, we identify a “core” segment and return its class.

We propose two approaches for the actual dialogue act classification. The first one
combines two tasks, sentence segmentation, with a classification of each segment separately,
similarly as described by (Yu and Yu, 2021). The main limitation of this approach is that
the actual classification relies on successful segmentation and takes only the context of the
preceding segments. The second approach combines the two steps by modeling the task as
the token classification. We take each token from the given utterance and classify it into
one of the classes. When two adjacent tokens have a different dialogue act label, they form
a segment boundary.
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The formal description of the first approach is following: Let

S = seg1, seg2, . . . , segm, B = b1, b2, . . . , bm−1

where S is a set of segments in an utterance U , where each segment segi is a sequence
of tokens and B is the set of predicted segment boundaries such that bi ∈ 0, 1, where 0
represents no segment boundary and 1 represents a boundary. The classifier f(U) diven
the utterance U predicts the probability

f(U) = p(bi = 1|si),∀i ∈ {0, . . . ,m− 1},
i.e., the probability of a boundary between segments si and si+1.

The classification g(segi) then estimates the probability ydai of a i − th segment cor-
responding to the dialogue act class da given the segment, all its predecessors, and the
contextual window W (see subsection 2.1.4) of size n − 1 (current utterance is not in-
cluded):

g(segi,W
n−1) = p(ydai |segj,W n−1, j ≤ i)

On the other hand, the token classification approach h(U,W n−1) takes a sequence of m
tokens from the utterance U and estimates the probability of each token ti corresponding
to a dialogue act class.

h(U,W n−1) = p(ydai |tj,W n−1, j ≤ i), ∀i ∈ {0, . . . ,m}
The segment boundary bi between segments si and si+1 is the estimated as follows:

bi =

{
1 if argmaxda∈DA ydai ̸= argmaxda∈DA ydai+1

0 otherwise

For both approaches mentioned above, we use an additional classifier that estimates
whether the segment is “core” or not. The core segment is the one that the conversational
system needs to react to. For example, when the system asks How are you? and the user
responds I am fine, thank you. What about you? we can divide the utterance into three
segments: I am fine—thank you—What about you? with corresponding classes: Specific
answer, Thanks, and Open-ended request. In this example, the last segment is the core
one, and the system should react to this one.

The model is a binary classifier that estimates for each segment whether it is the core
one or not. The input inp is encoded to contain the context (= previous turns), current
utterance, and the actual segment. Please note that the context is optional, and we run
experiments with various context lengths. Given the turn Ti and the context length n, we
classify encode the segment segj form the user utterance U i

u as follows:

inpj = Un−1
u <SEP>Un−1

b <SEP> . . . <SEP>U i−1
u <SEP>U i−1

b <SEP>U i
u<CORE>segj

where <SEP> is a separator token of individual utterances and <CORE> separates the current
segment from the utterances. Then, we estimate the probability of each segment from
the current utterance being the core one. Each utterance contains exactly one segment.
Therefore, we select the segment with the highest probability as the core one.

core = argmax
segj∈U i

u

h(inpj)
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6.3 Datasets

6.3.1 Switchboard

One of the most popular dialogue act datasets is The Switchboard Dialog Act (SwDA)
Corpus (Jurafsky and Shriberg, 1997). The corpus is based on the dataset of the manu-
ally transcribed human-to-human telephone conversation corpus created by Godfrey et al.
(1992). The dataset comprises 1,155 telephone conversations that each last for five minutes
and involve two participants. The conversations are limited to 70 pre-defined topics, such
as child care, recycling, and news media, with callers posing questions to receivers. The
dataset features 440 speakers who contribute to a total of 221,616 utterances, which can
be reduced to 122,646 utterances by merging consecutive utterances made by the same
speaker. One of the advantages of the dataset is the presence of the context of the whole
conversation. Contextual information is often important for a successful dialogue act clas-
sification.

The dataset contains two-sided telephone conversations, which are transcribed into
the text. Most importantly, each sentence (or sentence segment) is labeled with one dia-
logue act class. The original dataset contains over 200 classes. The Switchboard Coder’s
Manual1, however, contains rules to cluster those classes into a total number of 43. The
corresponding names and examples for each dialogue act class are shown in Table 6.1.

The distribution of the top 10 classes is shown in Figure 6.2. Most of the sentences
from the dataset are statements followed by acknowledgments and opinions. Some of
the classes, such as questions, are divided into several sub-classes (Yes-No-Question, Wh-
Question, Declarative Yes-No-Question, Open-Question, Rhetorical-Questions). This fact
should be considered before building a dialogue system since multiple similar classes can
reduce the overall performance, and they could be unnecessary for the particular system.

Overall, the dataset contains 213,543 training samples and 4,514 testing samples. The
average length of the sentence is 8 tokens.

6.3.2 Midas

Yu and Yu (2021) proposed a dataset called Machine Interaction Dialog Act Scheme
(MIDAS) focused on open-domain human–machine interactions. The motivation is that
the interaction between a human and a machine is, in its structure, different than a human–
human interaction. For example, users tend to say more commands when speaking with
a machine. Additionally, the set of dialogue act classes reflects the need for additional
decision algorithms, such as dialogue management. The data were collected using the
Alexa Prize Socialbot Grand Challenge 2 winning social bot Gunrock (Yu et al., 2019) and
annotated by human annotators.

The annotation scheme introduces a hierarchical structure of the dialog acts of human-
machine conversations. The structure is divided into two main sub-trees: semantic request
type (Figure 6.3) and functional request type (Figure 6.4). The semantic request type

1https://web.stanford.edu/~jurafsky/ws97/manual.august1.html
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Table 6.1: Top 10 dialogue act classes in Switchboard dataset (after clustering).

Name Tag Example

Statement-non-
opinion

sd Me, I’m in the legal depart-
ment.

Acknowledge
(Backchannel)

b Uh-huh.

Statement-opinion sv I think it’s great
Abandoned or Turn-
Exit

% So, -

Agree/Accept aa That’s exactly it.
Appreciation ba I can imagine.
Yes-No-Question qy Do you have to have any spe-

cial training?
Non-verbal x [Laughter], [Throat clearing]
Yes answers ny Yes.
Conventional-closing fc Well, it’s been nice talking to

you.

captures dialog content and is divided into the initiative and responsive classes. This is
critical from the dialogue design perspective as the initiative branch typically leads to a
change in the flow. Next, the initiative class is separated into two categories, question and
command, and the responsive class is further divided into opinion, statement non-opinion,
and answer.

Functional request type helps dialog systems achieve discourse level coherence and is
divided into incomplete, social convention, and other classes. Incomplete utterances are
common in human–machine conversations, especially due to ASR errors and the situations
when the user’s utterance is cut prematurely. Social convention is typically used to reply
to the utterance in any context properly.

The dataset was created by annotating socialbot conversations. It resulted in 24k
sentences from 468 conversations. 12.9k sentences were from a user, and the rest from the
system. The sentences were automatically pre-segmented before the annotation.

6.3.3 Dialogue Acts in Segmented Conversations

We present a Segment-Level Contextual Dialogue Act (SLCDA) dataset with a novel class
structure optimized for conversational systems. We address the following limitations iden-
tified in the existing datasets: (1) Either low language richness in humam–machine data
or annotated human–human conversation. (2) The segment boundaries are not explicitly
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Figure 6.2: Counts of the 10 most frequent classes in the Switchboard dataset (after
clustering).

Figure 6.3: Semantic request tree of MIDAS dataset (Yu and Yu, 2021).

annotated, but the approaches rely on punctuation-based segmentation, which may not be
aligned with DA-based segmentation.

The data are gathered from anonymized conversations from the selected applications
created on the Flowstorm platform (Pichl et al., 2022). As a result of dealing with the
mentioned limitations, we created the dataset with the following contributions:

1. Dialogue acts class set suitable for both manual dialogue design and generative mod-
els. Additional tags describe specific situations in conversations.

2. Sentence level dialogue acts allowing utterance segmentation and fine-grained dia-
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Figure 6.4: Functional request tree of MIDAS dataset (Yu and Yu, 2021).

logue acts detection.

3. Both user utterances and bot responses are annotated. The annotated user utter-
ances are suitable for training classification models. The annotated bot responses
are suitable for training dialogue-act-controllable generative models.

4. In multi-segment utterances, the core segment is labeled.

Annotation Process

We randomly selected 7,558 of the conversations that were more than 10 turns long. The
conversations were selected from a database of conversation logs containing template-based
dialogues and dialogues using the generative models. The intention behind this decision
was to primarily ensure the wide range of both user utterances and bot responses. From
the set of selected conversations, three annotators annotated 253 conversations.

We used Label Studio (Tkachenko et al., 2020-2022) as an annotation tool. We created
a labeling interface by modifying the template for conversational data. The whole conver-
sation was shown on a single screen, allowing the annotators to consider the full context.
To annotate the dialogue act classes and tags segment-wise, each annotator had to select
the range inside the utterance. Then, the proper class could be assigned to the selected
segment.

Segmentation Principles

Unlike a traditional segmentation using a punctuation restoration (Tilk and Alumäe, 2016;
Nagy et al., 2021), we created the segments based on the sentence’s meaning, e.g., the
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Table 6.2: Sample conversation with each segment labeled with a corresponding DA class.

Speaker Utterance

Bot: Welcome! I am Poppy. How do you want me to call you?

It’s easier if you type it but you can also say it out loud.

User: How do you want to call me?

Bot: You tell me.

User: Call me Princess.

Bot: Nice to meet you, Princess. Tell me, what brings you here?

User: I just checked you out.

Bot: I see. I would like to give you a short introduction to this app.

It will take about 5 minutes. Do you have the time now?

User: Can you take only two minutes? My phone’s low in percentage.

Bot: Well, I’d say let’s try it! . . .

Legend: Opening , Initiative Statement , Open-Ended Request ,

Task Command , Specific Answer , Opening – Responsive ,

Opening – Responsive

sentence “Hi, I’m Anthony.” is segmented into “Hi” and “I’m Anthony” as it consists of
Opening and Initiative statement. On the other hand, “Don’t worry, it’s not so bad”
is considered a single segment labeled as Acknowledgement. The number of segments for
user and bot utterances is shown in Table 6.3.

Table 6.3: Dataset statistic of segments per bot and user.

Participant Turns Segments Avg. # seg.

Bot 4,158 16,251 3.91
User 3,777 1,490 1.18

Dialogue Act Classes

The class set consists of 23 individual dialogue act classes. The classes are divided into six
groups: Greetings/Politeness, Interaction Particles, Feedback, Requests/Proposals,
Statements, and Unrecognized. Each segment in the dataset is labeled by exactly one
of the 23 classes. Additionally, there are 7 tags that can be optionally assigned to the
sentence as additional information. Both the dialogue act classes and the additional tags
are designed to cover typical situations in the human-bot conversation for both human and
bot utterances.
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The Greetings/Politeness group contains conversational openings and closings, apolo-
gies, and thanks. When recognized from the segmented user utterance, it is a good practice
to address it with a proper response before providing the reaction to the other segments
that may push the conversation further.

The Interaction Particles group contains responses to the questions and proposals
such as “yes”, “no” and other types of acknowledgments and refusals.

The Feedback group contains positive and negative feedback that typically refers to
the quality of the conversation.

The Requests/Proposals group contains requests/questions and proposals. These
utterances typically indicate that the communication partner is supposed to provide a
response addressing the request or proposal. The requests are further divided into open-
ended, multiple-choice and yes-no.

The Statements group is the most represented one. From the dialogue design perspec-
tive, the important disambiguation within the group is between initiative/non-initiative
and specific/non-specific statements (answers). The initiative statements or task com-
mands often mean a request for a change in the current flow of the dialogue that should
be handled by the dialogue manager. Additionally, the non-specific answer indicates the
situations when the user provided an answer from the linguistic point of view but the
content of the answer is not specific enough.

The Unrecognized group contains utterances that cannot be assigned to a specific
class that is either unfinished, contains speech recognition errors, or makes no sense. Note,
there is a Incomplete tag (see below) for unfinished utterances. Not all unfinished ut-
terances are unrecognized. When the utterance contains enough words to determine a
dialogue act, we assign a specific class along with an Incomplete tag.

The additional Tags group allows an extra label for each annotated segment. It is
used along with the dialogue act label to capture additional information. The tags are the
following:

◦ Repair – a user or bot asks for a clarification of the previous utterance or when a
segment is rephrasing the previous segment in a single utterance.

◦ Abrubt shift – non-coherent change in a topic

◦ Meta – comments about the previous speech, typically misunderstandings or confu-
sion. Typically coupled with negative feedback.

◦ Obscene – the inappropriate, rude, or vulgar utterance

◦ Incomplete – incomplete utterances due to speech recognition errors, long pauses, or
any other failures.

◦ Hold – filling sentences without a specific meaning. It often indicates an initiative
statement within the next segment.
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6.4 Experiments

We run several experiments using the publicly available datasets SwDA and Midas and our
custom dataset SLCDA. First, we experimented with different context sizes using BERT
and Albert models. Besides the classification accuracy as the main metric, we also measure
train time, inference time, and CPU memory at the model’s runtime. The reason behind
the additional metrics is that the focus of this thesis is also the resource effectiveness of the
proposed solutions. Unlike the models selected in the previous chapter, BERT and Albert
have millions of parameters (108M and 12M, respectively), so their training and inference
time and memory consumption are significant.

The train time is measured while training on Nvidia A100 GPU with a batch size of
256 for the BERT model and 64 for the Albert model. The inference time is measured on
the AMD EPYC 7V12 CPU using a batch size of 1, and the reported value is an average
of 100 inference requests.

Additionally, we provide experiments on optimized models. The model optimization is
done by converting the trained model format (PyTorch (Paszke et al., 2019)) to ONNX2.
Additionally, the models are optimized and quantized using the HuggingFace Optimum
library3 with default parameters.

Table 6.4: Dialogue act classification on SWDA with different context sizes.

Context Eval acc Train time Inference time CPU mem

BERT 1 78.9 4m12s 87ms 855MB
BERT 2 81.0 4m43s 88ms 855MB
BERT 3 81.5 5m12s 87ms 855MB
BERT 5 82.0 5m55s 91ms 855MB
Albert 3 80.6 6m27s 138ms 523MB
Albert 5 81.5 6m53s 140ms 523MB

Table 6.5: Dialogue act classification on Midas with different context sizes.

Context Eval acc Train time Inference time Model size

BERT 1 74.0 2m15s 88ms 855MB
BERT 2 79.4 2m17s 95ms 855MB
Albert 1 73.1 1m48s 125ms 523MB
Albert 2 78.5 1m48s 131ms 523MB

As we can see in Table 6.4 and 6.5, the context size plays a significant role in the
dialogue act detection. Context size 1 means that we classify only given the current

2https://onnx.ai/
3https://huggingface.co/docs/optimum/index
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utterance. Therefore, the most significant accuracy increase is when we included at least
the previous turn (context size 2). Additional context turns slightly increase the accuracy
as shown at the SwDA dataset. Midas dataset does not provide a context longer than 2
turns.

Table 6.6 shows the results using ONNX, ONNX optimized, and ONNX quantized
BERT and Albert models. The optimized version uses 16-bit floating-point precision in-
stead of the default 32-bit, and the quantized version uses an 8-bit integer for the model
weights and activations.

The results show that the optimization reduces the memory using both CPU and GPU
significantly. However, the inference time is higher rapidly for the CPU inference because
the CPUs typically do not have direct floating point 16 support. GPU inference time is 1.75
times faster, while the accuracy is on the same level. On the other hand, the quantization is
slower on GPU, as the GPUs are not suitable for integer operations. However, the memory
requirement is reduced rapidly, but also the accuracy is reduced from 82 % to 77 % for the
BERT model and from 81.5 % to 38 % for the Albert model.

Table 6.6: Dialogue act classification using optimized models on SwDA dataset with a
context size of 5.

Acc CPU mem
Inference

time (CPU)
GPU mem

Inference
time (GPU)

BERT onnx 82.0 827MB 15ms 1090MB 3.5ms
BERT onnx-opt 82.0 372MB 218ms 289MB 2ms
BERT onnx-quant 77.0 203MB 7ms 86MB 15ms
Albert onnx 81.5 653MB 14ms 553MB 3.5ms
Albert onnx-quant 38.0 170MB 7ms 27MB 15ms

Using the proposed dataset, we present the results of two experiments conducted to
explore two main properties of the dataset. The first experiment is segmentation, and the
second is the actual dialogue act classification on already recognized segments. The total
number of 253 conversations is divided into train and test splits containing 202 and 51
conversations, respectively. The splits are the same for both experiments.

6.4.1 Segmentation

The segmentation task is focused on dividing long utterances possibly into smaller units—
segments. Each segment is then intended to be an atomic part of the initial utterance from
the dialogue act perspective. We selected a token classification approach as a baseline
model for this task. The input for the model is a user or bot utterance from a single turn.
The important preprocessing step is to remove the punctuation characters “.,!?” as we do
not want the model to use these characters as the reference for the segmentation boundary.
Additionally, we convert the text into lowercase. Since the segments are not overlapping
and a new segment starts right where the previous ends, each token can be labeled either
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‘O’ (outside) or ‘END’ (indicating that the segment ends after this token). The task of the
model is then to label each token to find the boundaries of the segments.

We selected TBRNN (Tilk and Alumäe, 2016), BERT (Devlin et al., 2019), ALBERT
(Lan et al., 2019), and DistilBERT (Sanh et al., 2019) as the baseline models (the same
models as in section 4.4.4). The implementation of the models was used from the Hug-
gingface Transformers4 library. Both models were trained for 15 epochs with batch size 32.
The results are shown in Table 6.7.

Table 6.7: Segmentation results on SLCDA dataset

Model Precision Recall F1 score

TBRNN 86.8 81.2 84.0
Albert 88.4 95.5 92.1
DistilBERT 88.9 94.6 91.8
BERT 90.7 94.5 92.5

Additionally, we run the sentence classification of each segment to estimate the cor-
responding dialogue act classes. We combine the segmentation models with BERT and
Albert as dialogue act classification models. Then, we compare the estimated dialogue act
classes per each ground truth segment. In other words, we label each token from the clas-
sified segment with the inferred dialogue act label and compare it with the ground truth.
If all of the tokens from the true segment have the correct label, we mark the segment as
correctly classified. E.g., if the segmentation does not identify a boundary between two
segments with the same dialogue act class and the classification correctly predicts the class
for this joint segment, both segments are marked as a correct classification.

Table 6.8: Two-step dialogue act classification. Context size 5. The first model is the
segmentation model, and the second one is for the DA classification.

Model DA Acc Tag Acc

TBRNN + Albert 64.8 76.5
Albert + Albert 70.2 80.6
DistilBERT + Albert 69.9 81.3
BERT + Albert 70.4 81.7
TBRNN + BERT 65.7 77.5
Albert + BERT 69.5 81.4
DistilBERT + BERT 71.0 82.2
BERT + BERT 70.8 82.3

4https://github.com/huggingface/transformers
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6.4.2 Dialogue Act Classification

The Dialogue Act Classification task is performed on each individual segment separately.
We assign one dialogue act class to each segment plus one optional tag. The dialogue
acts and tag classifiers are trained as separate models. Each individual input contains the
segment for which we want to know the dialogue act plus the previous segments from the
same utterance. The segments are separated using [SEG] token. We also experimented
with different context sizes from 1 to 5 turns. To add context to the base input, we
concatenated consecutive turns into one string and used [SEP] token as a separator.

We use the same BERT and Albert models as in the segmentation task. Both models
were trained for 10 epochs with batch size 32. The results on the proposed dataset, along
with the results of the same models on SwDA and MIDAS datasets, are shown in Table
6.9.

Table 6.9: Dataset act classification results on SwDA, Midas, and our Segment-Level
Contextual Dialogue Act (SLCDA). The Context column shows the number of turns in
the context.

Dataset Model Context DA Acc Tag Acc

SwDA BERT 1 78.9 -
SwDA BERT 2 81.0 -
SwDA BERT 3 81.5 -
SwDA BERT 5 82.0 -
SwDA Albert 3 80.6 -
SwDA Albert 5 81.5 -

MIDAS BERT 1 74.0 -
MIDAS BERT 2 79.4 -
MIDAS Albert 1 73.1 -
MIDAS Albert 2 78.5 -

SLCDA BERT 1 71.2 82.3
SLCDA BERT 2 74.6 83.5
SLCDA BERT 3 75.1 84.2
SLCDA BERT 5 75.9 84.8
SLCDA Albert 3 73.7 82.2
SLCDA Albert 5 75.2 84.1

The optimized floating point 16 version of the best-performing model has a statistically
insignificant accuracy drop of 0.1 %, and the quantized version using integer 8 has a drop
of 3.9 %.

Table 6.10 show the results of core segment classification. We measure the accuracy
of user and bot utterances separately, as the user utterances are typically shorter (see
Table 6.3). Due to the low number of average segments per user utterance, the core
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segment classification in these utterances is an easy task, resulting in high accuracies.
Therefore, the accuracy measured on bot segments is a more significant metric.

Table 6.10: Core segment classification results.

Model Context User Acc Bot Acc

Albert 1 98.5 84.0
Albert 2 98.5 86.8
Albert 3 98.7 87.1
Albert 5 98.8 87.8
BERT 1 98.5 82.6
BERT 2 98.6 85.4
BERT 3 98.8 85.9
BERT 5 98.8 86.6

6.5 Conclusion and Main Contributions

We proposed a pragmatic level of Natural Language Understanding for the conversational
systems as an addition to the intent recognition and Out of domain detection. The pro-
posed method leverages Dialogue Act detection focused on the individual segments of the
utterance. Each segment may play a different role in the conversation, and its importance
may vary. Therefore, we also introduced the concept of the “core” segments.

We reviewed the standard datasets such as SwDA and Midas, where the former contains
annotated human–human conversations while the latter contains human–machine conver-
sations with a limited context. We showed that contextual information plays a crucial role
in DA detection on both of these datasets. Especially in the field of conversational AI, the
utterances may be short, so the relation the the previous context may contain information
that is not included in a single utterance. Additionally, we experimented with optimized
versions of the models to ensure the overall system is not slowed down by the additional
component.

We created our custom dataset for DA classification that contains various types of
human–machine conversations with the context containing the full conversation. This
dataset has the individual classes labeled per utterance segment. The segmentation is
manually annotated, unlike in the previous dataset, making the segments more accurate
with the connection to the dialogue acts. Finally, we annotated core segments in each
utterance. As the dataset statistics show, the users tend to say shorter utterances, resulting
in a low average segment count per utterance. For that reason, the bot utterances are better
data for the core segment classifier.

We experimented with a two-step classification consisting of segmentation and the
actual classification. Additionally, we proposed a token classification approach classifying
each token into a dialogue act class, resulting in a segmented classification. The results
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show that the second approach performs better on our dataset. Finally, we trained a core
segment classifier that primarily leveraged bot utterances.
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Chapter 7

Conclusion

This thesis focused on conversational systems and their underlying Natural Language Un-
derstanding components. The main goal was to create an architecture with a strong NLU
performance while keeping the overall system response time on a reasonable level. The
achieve this goal, we researched several approaches to hybrid architecture that combine
precisely created dialogue designs with robust end-to-end models capable of handling a
wide range of user inputs.

In the first chapter, we introduced the basic units of the conversation that are essential
for this topic. Following a brief summary of the historical conversational systems and the
recent approaches, we reviewed the advantages of the respective approaches and the overall
research trend. We introduced the categorization of the conversational system from the
use case perspective, i.e., goal-oriented and open-domain. This categorization has been
historically tight to the actual system architecture, where goal-oriented system creators
often chose the modular approach while the end-to-end approach was usually selected for
the open-domain systems as it was able to respond to various inputs in a relatively coherent
way.

The second chapter focused on the architecture design of the conversational socialbot.
The name socialbot was introduced during the first annual Alexa Prize Socialbot Grand
Challenge and stands for a social chatbot as an illustration of the open-domain “social”
conversation between a user and the bot. The goal of the competition was to design a
system capable of having a coherent and engaging conversation with a user. Focused on
that goal, we designed several systems leveraging the hybrid architecture. This thesis
contributed to the overall success of all of the systems by an effective architecture design
with a focus on the NLU part, its performance, and its effectiveness. The systems were
awarded as one of the top three winners during each year of the competition and the
fourth iteration was the overall first-place winner. The most significant NLU contributions
include the decomposition of the open-domain approach into multiple levels while allowing
the user to navigate smoothly through the levels representing both the individual topics
and the depth of the respective topic. This eventually resulted in the design of a generic
conversational platform called Flowstorm.
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7. Conclusion

The proposed Flowstorm platform is focused on a modular conversation design lever-
aging conversational units called sub-dialogues. This decomposition level was created as
a result of experiments with the socialbot architectures and was used in the final winning
system. The strengths of the system ensure an effective design process while using a min-
imal amount of data. Additionally, the flexibility of putting the units together creates a
variable user experience. This architecture is supported by a visual editing tool allowing
quick prototype, testing, and deployment of the applications built on top the the proposed
architecture. The sub-dialogue structure comes along with the need for hierarchical intent
recognition. We proposed and experimented with three approaches where the main focus
was on using a separate model for each individual sub-dialogue while being able to com-
bine them in complex scenarios. The three methods, namely Single Model with Masking,
Try-Catch Mechanism, and Routing Mechanism, approach the combination of the mod-
els differently, and their pros and cons are discussed. Moreover, the intent recognition is
coupled with a context-aware OOD detection, allowing the system to recognize the limits
of the underlying conversational design and smooth transition to the selected generative
approach. This method proved particularly useful in connection to the recent advancement
in Large Language Models.

In addition to sub-dialogue-related intent recognition, we propose a pragmatic level of
NLU represented by the dialogue act detection. The pragmatic level is based on dialogue
act detection, allowing recognition of various acts of the utterance of both the user and
the bot. This is useful for different strategies while handling out-of-domain utterances by
a different logic and for influencing the result of the generative models. We propose a joint
segmentation and dialogue act detection, allowing handling longer utterances and focusing
only on the relevant parts. We propose a custom dataset reflecting the needs of the task,
especially the source of the annotated data and manual segment annotation.

Overall, we proposed a novel architecture design with a flexible hierarchical intent
recognition, augmented by Out of domain detection and dialogue act detection. The
proposed concepts have been proved in multiple iterations of Alexa Prize Socialbot Grand
Challenge competitions and by a widely used application called Elysai.
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Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations us-
ing RNN encoder–decoder for statistical machine translation. In Alessandro Moschitti,
Bo Pang, and Walter Daelemans, editors, Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar,
October 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179.
URL https://aclanthology.org/D14-1179.

Pierre Colombo, Emile Chapuis, Matteo Manica, Emmanuel Vignon, Giovanna Varni,
and Chloe Clavel. Guiding attention in sequence-to-sequence models for dialogue act
prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 7594–7601, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Jill Burstein,
Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Xin Luna Dong, Seungwhan Moon, Yifan Ethan Xu, Kshitiz Malik, and Zhou Yu. Towards
next-generation intelligent assistants leveraging llm techniques. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 5792–5793,
2023.

131

https://python.langchain.com/docs/get_started/introduction
https://python.langchain.com/docs/get_started/introduction
https://doi.org/10.1145/3209978.3209997
https://www.microsoft.com/en-us/research/publication/contextual-text-understanding-in-distributional-semantic-space/
https://www.microsoft.com/en-us/research/publication/contextual-text-understanding-in-distributional-semantic-space/
https://aclanthology.org/D14-1179
https://aclanthology.org/N19-1423


Bibliography
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[A.6] Konrád Jakub, Pichl Jan, Marek Petr, Lorenc Petr, Duy Ta Van, Kobza Ondřej
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